Panasonic

Operating Instructions (Overall) AC Servo Motor \& Driver MINAS A5-series

- Thank you for purchasing this Panasonic product.
- Before operating this product, please read the instructions carefully, and save this manual for future use.

Thank you for purchasing Digital AC Servo Motor \& Driver, MINAS A5-series. This instruction manual contains information necessary to correctly and safely use the MINAS A5-series motor and driver. By reading this instruction manual, you will learn how to identify the model of the motor and driver that will be best suitable your application, how to wire and set up them, how to set parameters, and how to locate possible cause of symptom and to take corrective action.

This is the original instruction.

Caution \cdots 1) Any part or whole of this document shall not be reproduced without written permission from us.
2) Contents of this document are subject to change without notice.

Describes how to identify and select the desired product and components, how to read the specifications, and how to install the equipment.

2. Preparation

Operating requirements and procedure
Shows the timing chart and the list of parameters, and describes how to make wiring and to use the front panel.

3. Connection

Wiring ... I/O settings
Shows block diagrams for each control mode and connection diagrams to the host controllor, I/O settings.

Describes parameters ... JOG running
Shows describes parameters and procedure of test operation.

5. Adjustment

Gain adjustment ... Auto tuning
Describes various adjusting method including auto tuning and manual gain tuning.

Read this section when you encounter trouble or error.

7. Supplement

Contains S-T characteristic diagram, dimensional outline drawing, supplemental description on communications and operation.

Contents

Organization of this manual 3Safety Precautions
Conformance to international standards 10
Maintenance and Inspections 11

1. Before Using the Products 1-1
2. Introduction 1-2
3. Driver 1-3
4. Motor 1-21
5. Check of the Combination of the Driver and the Motor 1-23
6. Installation 1-28
7. Permissible Load at Output Shaft 1-35
8. Preparation 2-1
9. Conformance to international standards 2-2
10. System Configuration and Wiring 2-10
11. Wiring to the Connector, X 1 2-51
12. Wiring to the Connector, X2 2-51
13. Wiring to the Connector, X3 2-53
14. Wiring to the Connector, X 4 2-54
15. Wiring to the Connector, X 5 2-55
16. Wiring to the Connector, X6 2-57
17. Wiring to the Connector, X 7 2-60
18. Timing Chart 2-61
19. Built-in Holding Brake 2-65
20. Dynamic Brake 2-67
21. Setup of Parameter and Mode 2-72
22. Setup of command division and multiplication ratio (electronic gear ratio) 2-84
23. How to Use the Front Panel 2-86
24. Connection 3-1
25. Outline of mode 3-2
26. Control Block Diagram 3-14
27. Wiring to the Connector, X4 3-18
28. Inputs and outputs on connector X4 3-30
29. IF Monitor Settings 3-50
page
4．Setup 4－1
1．Describes parameters 4－2
2．JOG running 4－59
5．Adjustment 5－1
1．Gain Adjustment 5－2
2．Real－Time Auto－Gain Tuning 5－4
3．Adaptive Filter 5－10
4．Manual Auto－Gain Tuning（Basic） 5－13
5．Manual Auto－Gain Tuning（Application） 5－24
6．About Homing Operation 5－39
6．When in Trouble 6－1
1．When in Trouble 6－2
2．Setup of gain pre－adjustment protection 6－18
3．Troubleshooting 6－21
7．Supplement 7－1
1．Safety function 7－2
2．Absolute System 7－10
3．Setup Support Software，PANATERM 7－26
4．Communication 7－27
5．Motor Characteristics（S－T Characteristics） 7－55
6．Dimensions 7－73
7．Options 7－92
Warranty 7－126
Cautions for Proper Use 7－127
After－Sale Service Back cover

Safety Precautions

The following explanations are for things that must be observed in order to prevent harm to people and damage to property.

- Misuses that could result in harm or damage are shown as follows, classified according to the degree of potential harm or damage.

Indicates great possibility of death or serious injury.
\triangle Caution
Indicates the possibility of injury or property damage.

- The following indications show things that must be observed.
Indicates something that must not be done.

	Do not subject the Product to water, corrosive or flammable gases, and combustibles.	Failure to observe this instruc- tion could result in fire, electrical shocks, damages and break- downs.
	Do not place combustibles near by the motor, driverd regenerative resistor and dynamic brake resister..	Don't use the motor in a place subject to exces- sive vibration or shock.
Don't use cables soaked in water or oil.	Failure to observe this instruc- tion could result in electrical shock, injury or fire.	
	Failure to observe this instruc- tion could result in electrical shocks, damages and break- downs.	
	The installation area should be away from heat generating objects such as a heater and a large wire wound resistor.	Failure to observe this instruc- tion could result in fire and breakdowns.
	Don't attempt to carry out wiring or manual opera- tion with wet hand.	Failure to observe this instruc- tion could result in electrical shock, injury or fire.
	Failure to observe this instruc- tion could result in burn and electrical shocks.	
	Do not put your hands in the servo driver.	

. Caution

	Do not hold the motor cable or motor shaft during the transportation.	Failure to observe this instruc- tion could result in injuries.
Don't drop or cause topple over of something dur- ing transportation or installation.	Failure to observe this instruc- tion could result in injuries and breakdowns.	
object on them.	Failure to observe this instruc- tion could result in electrical shocks, injuries, breakdowns and damages.	
Don't use the equipment under direct sunshine.	Failure to heed these instruc- tions will cause personal injury or fire.	
Do not block the heat dissipating holes or put the foreign particles into them.	Failure to observe this instruc- tion could result in electrical shocks and fire.	
Do not give strong impact shock to the Product.	Failure to observe this instruc- tion could result in breakdowns.	
	Do not give strong impact shock to the motor shaft.	Failure to observe this instruc- tion could result in a failure of the detector etc.
	Do not turn on and off the main power of the driv- er repeatedly.	Failure to observe this instruc- tion could result in breakdowns.
Never run or stop the motor with the electro-mag- netic contactor installed in the main power side.	Do not make an extreme gain adjustment or change of the drive. Do not keep the machine running/operating unsta- bly.	Failure to observe this instruc- tion could result in injuries.
Do not use the built-in brake as a "Braking" to stop the moving load.	Failure to observe this instruc- tion could result in injuries and breakdowns.	
Do not approach to the machine since it may sud- denly restart after the power resumption. Design the machine to secure the safety for the operator even at a sudden restart.	Failure to observe this instruc- tion could result in injuries.	
Never attempt to perform modification, dismantle or repair.	Failure to heed this instruction will result in fire, electric shock, personal injury or malfunction.	

Observe the specified voltage.
Operation from a voltage outside the rated voltage will cause electric shock, personal injury or fire.
Make an appropriate mounting of the Product matching to its wight and output rating.
Observe the specified mounting method and direction.
Use the eye bolt of the motor for transportation of the motor only, and never use this for transportation of the machine.

Don't place any obstacle object around the motor and peripheral, which blocks air passage.

Failure to heed these requirements will result in personal injury or malfunction.

Using it for transportation of the machine will cause personal injury or malfunction.
Temperature rise will cause burn injury or fire.
Adjust the motor and driver ambient environmental condition to match the motor operating temperature and humidity.
Create the specified clearance between the driver and the control panel inner surface or other devices.

Failure to heed these requirements will result in personal injury or malfunction.

Missing of one of these devices will result in personal injury or malfunction. is to shut off at emergency stop in series.

No protection will cause per-
Provide protection device against idling of electromagnetic brake or gear head, or grease leakage from gear head.

Use the motor and the driver in the specified combination. sonal injury, damage, pollution or fire.
Not using the motor and the driver in the specified combination will result in fire.
Test-run the securely fixed motor without loading Operation using a wrong model or wrong wiring connection will result in personal injury. the mechanical system.
When any error occurs, remove the cause and release the error after securing the safety, then restart.

Not removing the cause of the error will result in personal injury.
If the driver fails, shut off the power on the power supply side of the driver.

Allowing a large current to continue to pass will result in fire.
Wrong wiring will cause personal injury or electric shock.
Improper operation will cause Always keep power disconnected when the power is not necessary for a long time. personal injury.

When you dispose the batteries, observe any applicable regulations or laws after insulating them with tape.

This Product shall be treated as Industrial Waste when you dispose.

Conformance to international standards

C ϵ
 c~us
 LISTED

Conformed Standards

		Driver	Motor
EC Directives	EMC Directives	EN55011 EN61000-6-2 EN61800-3	-
	Low-Voltage Directives	EN61800-5-1	$\begin{aligned} & \text { EN60034-1 } \\ & \text { EN60034-5 } \end{aligned}$
	Machinery Directives Functional safety	$\begin{aligned} & \text { EN954-1 (Cat. 3) } \\ & \text { ISO13849-1 (PL c,d²) (Cat. 3) } \\ & \text { EN61508 (SIL 2) } \\ & \text { EN62061 (SIL 2) } \\ & \text { EN61800-5-2 (STO) } \\ & \text { IEC61326-3-1 } \end{aligned}$	-
UL Standards		UL508C (E164620)	$\begin{aligned} & \text { UL1004-1 } \\ & \binom{\text { E327868: to } 750 \mathrm{~W}(200 \mathrm{~V})}{\text { from } 6.0 \mathrm{~kW}} \\ & \text { UL1004 } \\ & \left(\begin{array}{l} \text { E327868: 400W }(400 \mathrm{~V}) \\ 600 \mathrm{~W}(40 \mathrm{~V}), 750 \mathrm{~W}(400 \mathrm{~V}) \\ 0.9 \mathrm{~kW} \text { to } 5.0 \mathrm{~kW} \end{array}\right. \end{aligned}$
CSA Standards		C22.2 No. 14	C22.2 No. 100

IEC : International Electrotechnical Commission
EN : Europaischen Normen
EMC : Electromagnetic Compatibility
UL : Underwriters Laboratories
CSA : Canadian Standards Association
Pursuant to the directive 2004/108/EC, article 9(2)
Panasonic Testing Centre
Panasonic Service Europe, a division of Panasonic Marketing Europe GmbH
Winsbergring 15, 22525 Hamburg, F.R. Germany

- Products shall conform to the statutory regulations applied in the place of destination.
- Only for position control type does not support functional safety ${ }^{\left({ }^{* 1)}\right.}$ standards.
*2 PL d: Provided that EDM is used.

Routine maintenance and inspection of the driver and motor are essential for the proper and safe operation.

Notes on Maintenance and Inspection

1) Turn on and turn off should be done by operators or inspectors themselves. When establishing a system using safety functions, completely understand the applicable safety standards and the operating instruction manual or technical documents for the product.
2) Internal circuit of the driver is kept charged with high voltage for a while even after power-off. Turn off the power and allow 15 minutes or longer after LED display of the front panel has gone off, before performing maintenance and inspection.
3) Disconnect all of the connection to the driver when performing megger test (Insulation resistance measurement) to the driver, otherwise it could result in breakdown of the driver.
4) Do not use benzine, thinner, alcohol, acidic cleaner and alkaline cleaner because they can discolor or damage the exterior case.
5) The upper fan on H -frame driver is kept deactivated while servo is off, for the purpose of energy saving. This is normal.

Inspection Items and Cycles

General and normal running condition
Ambient conditions: $30^{\circ} \mathrm{C}$ (annual average), load factor of 80% or lower, operating hours of $\mathbf{2 0}$ hours or less per day.

Perform the daily and periodical inspection as per the items below.

Type	Cycles	Items to be inspected
Daily inspection	Daily	- Ambient temperature, humidity, speck, dust or foreign object - Abnormal vibration and noise - Main circuit voltage - Odor - Lint or other particles at air holes - Cleanness at front portion of the driver and connector - Damage of the cables - Loose connection or misalignment between the motor and machine or equipment - Pinching of foreign object at the load
Motor with Gear Reducer	Annual	- Loose tightening - Trace of overheat - Damage to the terminal block - Loose fasteners on terminal block

Guideline for Parts Replacement

Use the table below for a reference. Parts replacement cycle varies depending on the actual operating conditions. Defective parts should be replaced or repaired when any error have occurred.

Prohibited	Disassembling for inspection and repair should be carried out only by authorized dealers or service company.

Product	Component	Standard replacement cycles (hour)	Note
Driver	Smoothing condenser	Approx. 5 years	These hours or cycles are reference. When you experience any error, replacement is required even before this standard replacement cycle.
	Cooling fan	$\begin{gathered} 2 \text { to } 3 \text { years } \\ (10,000 \text { to } 30,000 \text { hours }) \end{gathered}$	
	Aluminum electrolytic capacitor (on PCB)	Approx. 5 years	
	Rush current preventive relay	Approx. 100,000 times (depending on working condition)	
	Rush current preventive resistor	Approx. 20,000 times (depending on working condition)	
Motor	Bearing	3 to 5 years $(20,000$ to 30,000 hours $)$	
	Oil seal	5000 hours	
	Encoder	$\begin{gathered} 3 \text { to } 5 \text { years } \\ (20,000 \text { to } 30,000 \text { hours }) \end{gathered}$	
	Battery for absolute encoder	Life time varies depending on working conditions. Refer to the Operating Instructions attached to the battery for absolute encoder.	

- Before using the products

1. Introduction

Outline 1-2
On Opening the Product Package 1-2
2. Driver
Check of the Model 1-3
Parts Description
A to E-frame 1-4
F-frame 1-5
G-frame 1-6
H-frame 1-7
D to F-frame (400 V) 1-8
G-frame (400 V) 1-9
H-frame (400 V) -10
Specifications 1-11
Block Diagram 1-15
3. Motor
Check of the Model 1-21
Parts Description 1-22
4. Check of the Combination of the Driver and the Motor
Incremental Specifications, 20-bit 1-23
Absolute Specifications, 17-bit 1-25
Junction cable for motor 1-27
5. Installation
Driver 1-28
Motor 1-32
6. Permissible Load at Output Shaft
Motor 1-35

1. Introduction

Outline

The AC Servo Motor \& Driver, MINAS A5-series is the latest servo system that meets all demands from a variety of machines which require high speed, high precision and high performance or which require simplified settings.

Compared with the preceding A4-series, product of A5-series offers superior performance while requiring simple setup and adjustment by the user.

Newly designed motors have wide range of outputs from 50 W to 15.0 kW , associated with 20-bit incremental encoder and reduced cogging torque.
(Only for position control type have range of outputs from 50 W to 5.0 kW .)
They are compatible with 2 closed controls (serial communication type and A-/B-phase output type) and provided with various automatic adjusting functions such as real time auto tuning with many automatic setting parameters to make complex tuning easy.
(Only for position control type do not conform to full-closed control.)
These motors assure higher stability with low stiffness machine and high-speed, high accurate operation with high stiffness machine. They can be used in combination with a wide variety of machines.

This manual is written as a complete guide for you so that you can fully and correctly make use of all functions available from MINAS A5.

1 Before Using the Products

1. Introduction

On Opening the Product Package

- Make sure that the model is what you have ordered.
- Check if the product is damaged or not during transportation.
- Check if the Operating Instructions (safety) are included or not.
- Check if the power connector, motor connectors, connector for external regenerative resistor connection (D-frame (400 V) and E -frame) and safety by-pass plug are included or not.
(Neither the power connector nor motor connector are included to F-frame to H-frame.) (Safety bypass plug is not supplied with only for position control type because it does not use this plug.)

Contact to a dealer if you find any failures.

Before Using the Products

2. Driver

Check of the Model

Model Designation

Velocity, position, torque and full-closed control type

Only for position
Only for pos
control type

Frame-size symbol
Symbol
MADH
A5-series, A-frame
MBDH
MCDH
A5-series, B-frame
MDDH
A5-series, C-frame
MEDH
A5-series, D-frame
MFDH
MGDH
A5-series, E-frames, F-frame
MHD

NOTE)

Only for position control type is provided A-Frame to F-frame.

Special specifications (letters and numbers)

Special specifications (letters and numbers) Only for position control type
of power device

Symbol	Current rating
T1	10 A
T2	15 A
T3	30 A
T4	35 A
T5	50 A
T7	70 A
TA	100 A
TB	150 A
TC	300 A

- Current detector rating

Symbol	Current rating
05	5 A
07	7.5 A
10	10 A
12	12 A
20	20 A
30	30 A
40	40 A
64	64 A
90	90 A
A2	120 A
B4	240 A

Power supply

Symbol	Specifications
1	Single phase, 100V
3	3-phase, 200V
4	3-phase, 400V
5	Single/3-phase, 200V

[^0]Before Using the Products

2. Driver

Parts Description

A to D-frame

Connector XA: for main power connection

Connector XB:
for motor connection
06JFAT-SAXGF (JST)

E-frame

Connector XA: for main power connection

Connector XC:
Connector for external regenerative resistor 04JFAT-SAXGSA-L (JST)

Note

- Connector XA and XB are attached in A to D-frame driver.
- Connector XA, XB and XC are attached in E-frame driver.
- The figure above shows connections on velocity, position, torque and full-closed mode driver. Only for position control type is not provided with $\mathrm{X} 2, \mathrm{X} 3$ and X 5 .

F-frame

G-frame

Details of terminal block

* NC is no connect

Note . The figure above shows connections on velocity, position, torque and full-closed mode driver. Only for position control type is not provided with X2, X3 and X5.
Related page $\cdots .:$ • P.1-23 "Check of the Combination of the Driver and the Motor" • P.1-28 "Installation"

- P.2-10 "Driver and List of Applicable Peripheral Equipments" • P.7-73 to 7-78 "Dimensions"

H-frame

Details of terminal block

Note ... The figure above shows connections on velocity, position, torque and full-closed mode driver. Only for position control type is not provided with $\mathrm{X} 2, \mathrm{X} 3$ and X 5 .
Related page $\cdots \cdot:$ •P.1-23 "Check of the Combination of the Driver and the Motor" • P.1-28 "Installation"

- P.2-10 "Driver and List of Applicable Peripheral Equipments" • P.7-73 to 7-78 "Dimensions"

D, E-frame (400 V)

Connector XA:
for main power connection 03JFAT-SAYGSA-L (JST)

Connector XD:
Control power input terminals 02MJFAT-SAGF (JST)

Control power input terminals Main power input terminals
Terminals for external regenerative resistor (Normally short-circuit B3 to B2)

Connector XB:
for motor connection
03JFAT-SAXGSA-L (JST)
Connector XC:
Connector for external regenerative resistor
04JFAT-SAXGSA-L(JST)

* NC is no connect.

F-frame (400 V)

Note

- Connector X1 and X2 are attached in A to D-frame driver.
- Connector XA, XB, XC and XD are attached in D and E-frame (400 V) driver.
- The figure above shows connections on velocity, position, torque and full-closed mode driver. Only for position control type is not provided with $\mathrm{X} 2, \mathrm{X} 3$ and X 5 .

G-frame (400 V)

* NC is no connect.

H-frame (400 V)

Details of terminal block

DB1 Control terminal for
 dynamic brake resister

```
(이 (;) (;)
```

Control power
input terminals
$-\quad-24 \mathrm{~V}$
0 V

Terminals for external regenerative resistor

* NC is no connect.

Note . The figure above shows connections on velocity, position, torque and full-closed mode driver. Only for position control type is not provided with $\mathrm{X} 2, \mathrm{X} 3$ and X 5 .

Specifications (Velocity, position, torque, full-closed control type)

[^1]| Control input | | | | (1) Servo-ON input (2) Alarm clear input (3) Gain switching input
 (4) Positive direction over-travel inhibition input (5) Negative direction over-travel inhibition input
 (6) Forced alarm input (7) Inertia ratio switching input |
| :---: | :---: | :---: | :---: | :---: |
| Control output | | | | (1) Servo-Alarm output (2) Servo-Ready output (3) External brake release signal
 (4) Speed arrival output (5) Torque in-limit signal output
 (6) Zero-speed detection output signal
 (7) Alarm output
 (8) Alarm attribute output |
| | Control input | | | (1) Deviation counter clear (2) Command pulse inhibition
 (3) Command dividing gradual increase switching (4) Damping control switching
 (5) Torque limit switching (6) Control mode switching |
| | | Control output | | (1) Positioning complete (In-position) (2)Positional command ON/OFF output |
| | | Pulse input | Max. command pulse frequency | Exclusive interface for Photo-coupler: 500kpps Exclusive interface for line driver : 4Mpps |
| | | | Input pulse signal format | Differential input. Selectable with parameter. ((1) Positive and Negative direction, (2) A and B-phase, (3) Command and direction) |
| | | | Electronic gear (Division/Multiplication of command pulse) | Process command pulse frequency \times electronic gear ratio $\left(\frac{1 \text { to } 2^{30}}{1 \text { to } 2^{30}}\right)$ as positional command input. Use electronic gear ratio in the range 1/1000 to 1000 times. |
| | | | Smoothing filter | Primary delay filter or FIR type filter is adaptable to the command input |
| | | Analog input | Torque limit command input | Individual torque limit for both positive and negative direction is enabled. |
| | | | Torque feed forward input | Analog voltage can be used as torque feed forward input. |
| | | Instantaneous Speed Observer | | Available |
| | | Damping Control | | Available |
| | | Control input | | (1) Selection of internal velocity setup (2) Speed zero clamp
 (3) Speed command sign input (4)Control mode switching |
| | | Control output | | (1) Speed coincidence output (2)Speed command ON/OFF output |
| | | Analog input | Velocity command input | Speed command input can be provided by means of analog voltage. Parameters are used for scale setting and command polarity. (6V/Rated rotational speed Default) |
| | | | Torque limit command input | Individual torque limit for both positive and negative direction is enabled. |
| | | | Torque feed forward input | Analog voltage can be used as torque feed forward input. |
| | | Internal velocity command | | Switching the internal 8speed is enabled by command input. |
| T
 | | Soft-start/down function | | Individual setup of acceleration and deceleration is enabled, with 0 to $10 \mathrm{~s} / 1000 \mathrm{r} / \mathrm{min}$. Sigmoid acceleration/deceleration is also enabled. |
| 言 | | Zero-speed clamp | | 0-clamp of internal velocity command with speed zero clamp input is enabled. |
| | | Instantaneous Speed Observer | | Available |
| | | Control input | | (1) Speed zero clamp (2) Torque command sign input (3) Control mode switching |
| | | Control output | | (1) Speed coincidence output (2) Speed in-limit output |
| | | Analog input | Torque command input | Torque command input can be provided by means of analog voltage. Parameters are used for scale setting and command polarity. ($3 \mathrm{~V} /$ rated torque Default) |
| | | Speed limit function | | Speed limit value with parameter t is enabled. |
| | | Control input | | (1) Deviation counter clear (2) Command pulse inhibition
 (3) Command dividing gradual increase switching (4) Damping control switching
 (5) Torque limit switching |
| | | Control output | | (1) Full-closed positioning complete (2) Positional command ON/OFF output |
| | | Pulse input | Max. command pulse frequency | Exclusive interface for Photo-coupler: 500kpps Exclusive interface for line driver : 4Mpps |
| | | | Input pulse signal format | Differential input. Selectable with parameter. ((1) Positive and Negative direction, (2) A and B-phase, (3) Command and direction) |
| | | | Electronic gear (Division/Multiplication of command pulse) | Process command pulse frequency \times electronic gear ratio $\left(\frac{1 \text { to } 2^{30}}{1 \text { to } 2^{30}}\right)$ as positional command input. Use electronic gear ratio in the range 1/1000 to 1000 times. |
| | | | Smoothing filter | Primary delay filter or FIR type filter is adaptable to the command input |
| | | Analog input | Torque limit command input | Individual torque limit for both positive and negative direction is enabled. |
| | | | Torque feed forward input | Analog voltage can be used as torque feed forward input. |
| | | Setup range of division/ multiplication of feedback scale | | 1/40 to 160 times
 The ratio of encoder pulse (numerator) to external scale pulse (denominator) can be set to 1 to 2^{20} (numerator) to 1 to 2^{20} (denominator), but should be set to a ratio within the range shown above. |
| | $\begin{aligned} & \text { 우 } \\ & \frac{3}{3} \\ & 3 \\ & 0 \end{aligned}$ | Auto tuning | | The load inertia is identified in real time by the driving state of the motor operating according to the command given by the controlling device and set up support software "PANATERM". The gain is set automatically in accordance with the rigidity setting. |
| | | Division of encoder feedback pulse | | Set up of any value is enabled (encoder feedback pulses count is the max.). |
| | | Protective function | ve Hard error | Over-voltage, under-voltage, over-speed, over-load, over-heat, over-current and encoder error etc. |
| | | | ¢ ${ }^{\text {Soft error }}$ | Excess position deviation, command pulse division error, EEPROM error etc. |
| | | Traceability of alarm data | | The alarm data history can be referred to. |

Caution \cdots *1 The specification out of Japan.
*2 Air containing water vapor will become saturated with water vapor as the temperature falls, causing dew.
Related page $\cdots:$

- P.1-28 "Installation of Driver" • P.1-32 "Installation of Motor"

Caution -..is
Only for position control type is provided A-Frame to F-frame.
 the Products

2. Driver
 Block Diagram

C, D-frame (100/200 V)

E-frame (200 V)

F-frame (200 V)

Note

- The figure above shows connections on velocity, position, torque and full-closed mode driver. Only for position control type is not provided with $\mathrm{X} 2, \mathrm{X} 3$ and X 5 .

H-frame (200 V)

Note \ldots - The figure above shows connections on velocity, position, torque and full-closed mode driver. Only for position control type is not provided with $\mathrm{X} 2, \mathrm{X} 3$ and X 5 .

D-frame (400 V)

E-frame (400 V)

Note

- The figure above shows connections on velocity, position, torque and full-closed mode driver. Only for position control type is not provided with $\mathrm{X} 2, \mathrm{X} 3$ and X 5 .

G-frame (400 V)

Note ... The figure above shows connections on velocity, position, torque and full-closed mode driver. Only for position control type is not provided with $\mathrm{X} 2, \mathrm{X} 3$ and X 5 . G-frame: Only for position control type is not provided.

H-frame (400 V)

Before Using the Products

3. Motor

Check of the Model

Contents of Name Plate

Model Designation

*4 The product with oil seal is a special order product. *5 Key way with center tap
[Products are standard stock items or manufactured by order. For details, inquire the dealer.]

Note	details of specific model, refer to the Dimensions of Supplement.
Related page . \cdots :	23 "Check of the Combination of the Driver and the Motor" • P.7-79 to 7-93 "Dimension

3. Motor

Parts Description

- MSME 50W to 750W

Mounting holes (X4)
[with Brake]

e.g.) : Low inertia type (MSME series, 50W)

- MSME
$750 \mathrm{~W}(400 \mathrm{~V}), 1.0 \mathrm{~kW}$ to 5.0 kW
- MDME

400 W to 15.0 kW

- MFME
1.5 kW to 4.5 kW
- MGMA
0.9 kW to 6.0 kW
- MHME
1.0kW to 7.5 kW

e.g.) : Middle inertia type (MDME series, 1.0kW)

Note For details of specific model, refer to the Dimensions of Supplement. (P.7-79 to 7-93)

Before Using the Products

4. Check of the Combination of the Driver and the Motor

Incremental Specifications, 20-bit

This driver is designed to be used in a combination with the motor which are specified by us. Check the series name of the motor, rated output torque, voltage specifications and encoder specifications.

Remarks \cdots. Do not use in other combinations than those listed below.

Motor					Driver		
Power supply	Type	Rated rotational speed	Model	Rated output	Model of velocity, position, torque and full-closed control type	Model of Only for position control type	Frame
Single phase, 100V	MSMD Low inertia	3000r/min	MSMD5AZG1 *	50W	MADHT1105	MADHT1105E	A-frame
			MSMD011G1 *	100W	MADHT1107	MADHT1107E	
			MSMD021G1 *	200W	MBDHT2110	MBDHT2110E	B-frame
			MSMD041G1 *	400W	MCDHT3120	MCDHT3120E	C-frame
Single/ 3-phase, 200V			MSMD5AZG1 *	50W	MADHT1505	MADHT1505E	A-frame
			MSMD012G1 *	100W			
			MSMD022G1 *	200W	MADHT1507	MADHT1507E	
			MSMD042G1 *	400W	MBDHT2510	MBDHT2510E	B-frame
			MSMD082G1 *	750W	MCDHT3520	MCDHT3520E	C-frame
Single phase, 100V	MSME Low inertia	3000r/min	MSME5AZG1 *	50W	MADHT1105	MADHT1105E	A-frame
			MSME011G1 *	100W	MADHT1107	MADHT1107E	
			MSME021G1 *	200W	MBDHT2110	MBDHT2110E	B-frame
			MSME041G1 *	400W	MCDHT3120	MCDHT3120E	C-frame
Single/ 3-phase, 200V			MSME5AZG1 *	50W	MADHT1505	MADHT1505E	A-frame
			MSME012G1 *	100W			
			MSME022G1 *	200W	MADHT1507	MADHT1507E	
			MSME042G1 *	400W	MBDHT2510	MBDHT2510E	B-frame
			MSME082G1 *	750W	MCDHT3520	MCDHT3520E	C-frame
			MSME102G \square^{*}	1.0 kW	MDDHT5540	MDDHT5540E	D-frame
			MSME152G \square^{*}	1.5 kW			
$\begin{aligned} & \text { 3-phase, } \\ & 200 \mathrm{~V} \end{aligned}$			MSME202G \square *	2.0 kW	MEDHT7364	MEDHT7364E	E-frame
			MSME302G \square *	3.0 kW	MFDHTA390	MFDHTA390E	F-frame
			MSME402G \square *	4.0kW	MFDHTB3A2	MFDHTB3A2E	
			MSME502G \square *	5.0 kW			
$\begin{aligned} & \text { 3-phase, } \\ & \text { 400V } \end{aligned}$			MSME084G1 *	750W	MDDHT2412	MDDHT2412E	D-frame
			MSME104G \square^{*}	1.0kW	MDDHT3420	MDDHT3420E	
			MSME154G \square^{*}	1.5 kW	MDDHT3420	MDDHT3420E	
			MSME204G \square^{*}	2.0 kW	MEDHT4430	MEDHT4430E	E-frame
			MSME304G \square *	3.0 kW	MFDHT5440	MFDHT5440E	F-frame
			MSME404G \square *	4.0 kW	MFDHTA464	MFDHTA464E	
			MSME504G \square *	5.0 kW			
Single/	MDME Middle inertia	2000r/min	MDME102G \square *	1.0 kW	MDDHT3530	MDDHT3530E	D-frame
3-phase, 200V			MDME152G \square *	1.5 kW	MDDHT5540	MDDHT5540E	
$\begin{aligned} & \text { 3-phase, } \\ & 200 \mathrm{~V} \end{aligned}$			MDME202G \square *	2.0 kW	MEDHT7364	MEDHT7364E	E-frame
			MDME302G \square *	3.0 kW	MFDHTA390	MFDHTA390E	F-frame
			MDME402G \square *	4.0kW	MFDHTB3A2	MFDHTB3A2E	
			MDME502G \square *	5.0 kW			
		1500r/min	MDME752G1 *	7.5kW	MGDHTC3B4	-	G-frame
			MDMEC12G1 *	11.0kW	MHDHTC3B4		H-frame
			MDMEC52G1 *	15.0kW			
$\begin{aligned} & \text { 3-phase, } \\ & \text { 400V } \end{aligned}$		2000r/min	MDME044G1 *	400W	MDDHT2407	MDDHT2407E	D-frame
			MDME064G1 *	600W			
			MDME104G \square^{*}	1.0 kW	MDDHT2412	MDDHT2412E	
			MDME154G \square *	1.5kW	MDDHT3420	MDDHT3420E	
			MDME204G $\square^{\text {* }}$	2.0 kW	MEDHT4430	MEDHT4430E	E-frame
			MDME304G \square *	3.0 kW	MFDHT5440	MFDHT5440E	F-frame
			MDME404G \square *	4.0 kW	MFDHTA464	MFDHTA464E	
			MDME504G \square *	5.0 kW			
		1500r/min	MDME754G1 *	7.5kW	MGDHTB4A2	-	G-frame
			MDMEC14G1 *	11.0kW	MHDHTB4A2		H-frame
			MDMEC54G1 *	15.0 kW			

[^2]| Motor | | | | | Driver | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power supply | Type | Rated rotational speed | Model | Rated output | Model of velocity, position, torque and full-closed control type | Model of Only for position control type | Frame |
| $\begin{aligned} & \hline \text { Single/ } \\ & \text { 3-phase, } \\ & 200 \mathrm{~V} \end{aligned}$ | MFME
 Middle inertia | 2000r/min | MFME152G1 * | 1.5kW | MDDHT5540 | MDDHT5540E | D-frame |
| 3-phase, 200 V | | | MFME252G1 * | 2.5 kW | MEDHT7364 | MEDHT7364E | E-frame |
| | | | MFME452G1 * | 4.5 kW | MFDHTB3A2 | MFDHTB3A2E | F-frame |
| $\begin{aligned} & \text { 3-phase, } \\ & \text { 400V } \end{aligned}$ | | | MFME154G1 * | 1.5kW | MDDHT3420 | MDDHT3420E | D-frame |
| | | | MFME254G1 * | 2.5 kW | MEDHT4430 | MEDHT4430E | E-frame |
| | | | MFME454G1 * | 4.5 kW | MFDHTA464 | MFDHTA464E | F-frame |
| Single/ 3-phase, 200V | MGME
 Middle inertia | 1000r/min | MGME092G \square * | 0.9kW | MDDHT5540 | MDDHT5540E | D-frame |
| 3-phase, 200 V | | | MGME202G $\square^{\text {* }}$ | 2.0kW | MFDHTA390 | MFDHTA390E | F-frame |
| | | | MGME302G \square^{*} | 3.0kW | MFDHTB3A2 | MFDHTB3A2E | |
| | | | MGME452G1 * | 4.5kW | | | |
| | | | MGME602G1 * | 6.0kW | MGDHTC3B4 | - | G-frame |
| 3-phase, 400 V | | | MGME094G \square * | 0.9 kW | MDDHT3420 | MDDHT3420E | D-frame |
| | | | MGME204G \square * | 2.0kW | MFDHT5440 | MFDHT5440E | F-frame |
| | | | MGME304G \square * | 3.0kW | MFDHTA464 | MFDHTA464E | |
| | | | MGME454G1 * | 4.5kW | | | |
| | | | MGME604G1 * | 6.0kW | MGDHTB4A2 | - | G-frame |
| Single phase, 100V | MHMD
 High inertia | 3000r/min | MHMD021G1 * | 200W | MBDHT2110 | MBDHT2110E | B-frame |
| | | | MHMD041G1 * | 400W | MCDHT3120 | MCDHT3120E | C-frame |
| $\begin{aligned} & \text { Single/ } \\ & \text { 3-phase, } \\ & 200 \mathrm{~V} \end{aligned}$ | | | MHMD022G1 * | 200W | MADHT1507 | MADHT1507E | A-frame |
| | | | MHMD042G1 * | 400W | MBDHT2510 | MBDHT2510E | B-frame |
| | | | MHMD082G1 * | 750W | MCDHT3520 | MCDHT3520E | C-frame |
| Single/ 3-phase, 200 V | MHME
 High inertia | 2000r/min | MHME102G \square * | 1.0kW | MDDHT3530 | MDDHT3530E | |
| | | | MHME152G \square * | 1.5kW | MDDHT5540 | MDDHT5540E | D-frame |
| 3-phase, 200V | | | MHME202G \square * | 2.0 kW | MEDHT7364 | MEDHT7364E | E-frame |
| | | | MHME302G \square^{*} | 3.0kW | MFDHTA390 | MFDHTA390E | F-frame |
| | | | MHME402G \square^{*} | 4.0kW | MFDHTB3A2 | MFDHTB3A2E | |
| | | | MHME502G \square * | 5.0kW | | | |
| | | 1500r/min | MHME752G1 * | 7.5kW | MGDHTC3B4 | - | G-frame |
| $\begin{aligned} & \text { 3-phase, } \\ & \text { 400V } \end{aligned}$ | | 2000r/min | MHME104G \square^{*} | 1.0kW | MDDHT2412 | MDDHT2412E | D-frame |
| | | | MHME154G \square^{*} | 1.5kW | MDDHT3420 | MDDHT3420E | |
| | | | MHME204G \square^{*} | 2.0 kW | MEDHT4430 | MEDHT4430E | E-frame |
| | | | MHME304G \square^{*} | 3.0kW | MFDHT5440 | MFDHT5440E | F-frame |
| | | | MHME404G \square * | 4.0kW | MFDHTA464 | MFDHTA464E | |
| | | | MHME504G \square * | 5.0 kW | | | |
| | | 1500r/min | MHME754G1* | 7.5kW | MGDHTB4A2 | - | G-frame |

- Suffix of " \square " in the applicable motor model represents design order.
- Suffix of " * " in the applicable motor model represents the motor structure.

This driver is designed to be used in a combination with the motor which are specified by us. Check the series name of the motor, rated output torque, voltage specifications and encoder specifications.

Remarks \cdots Do not use in other combinations than those listed below.

Motor					Driver	
Power supply	Type	Rated rotational speed	Model	Rated output	Model of velocity, position, torque and full-closed control type	Frame
Single phase, 100 V	MSME Low inertia	3000r/min	MSME5AZS1 *	50W	MADHT1105	A-frame
			MSME011S1 *	100W	MADHT1107	
			MSME021S1 *	200W	MBDHT2110	B-frame
			MSME041S1 *	400W	MCDHT3120	C-frame
Single/ 3-phase, 200V			MSME5AZS1 *	50W	MADHT1505	A-frame
			MSME012S1 *	100W		
			MSME022S1 *	200W	MADHT1507	
			MSME042S1 *	400W	MBDHT2510	B-frame
			MSME082S1 *	750W	MCDHT3520	C-frame
			MSME102S \square *	1.0kW	MDDHT5540	D-frame
			MSME152S \square *	1.5 kW		
3-phase, 200V			MSME202S \square *	2.0 kW	MEDHT7364	E-frame
			MSME302S \square *	3.0 kW	MFDHTA390	F-frame
			MSME402S \square *	4.0 kW	MFDHTB3A2	
			MSME502S \square *	5.0 kW		
3-phase, 400 V			MSME084S1 *	750W	MDDHT2412	D-frame
			MSME104S \square *	1.0 kW	MDDHT3420	
			MSME154S \square *	1.5 kW	MDDHT3420	
			MSME204S \square *	2.0 kW	MEDHT4430	E-frame
			MSME304S \square *	3.0 kW	MFDHT5440	F-frame
			MSME404S \square *	4.0 kW	MFDHTA464	
			MSME504S \square *	5.0 kW		
Single/3-phase, 200 V	MDME Middle inertia	2000r/min	MDME102S \square *	1.0kW	MDDHT3530	D-frame
			MDME152S \square *	1.5 kW	MDDHT5540	
3-phase, 200 V			MDME202S \square *	2.0 kW	MEDHT7364	E-frame
			MDME302S \square *	3.0 kW	MFDHTA390	
			MDME402S \square *	4.0 kW	MFDHTB3A2	F-frame
			MDME502S \square *	5.0 kW	MFDHTB32	
		1500r/min	MDME752S1 *	7.5kW	MGDHTC3B4	G-frame
			MDMEC12S1 *	11.0 kW	MHDHTC3B4	H-frame
			MDMEC52S1 *	15.0 kW		
3-phase, 400 V		2000r/min	MDME044S1 *	400W	MDDHT2407	D-frame
			MDME064S1 *	600W		
			MDME104S \square *	1.0kW	MDDHT2412	
			MDME154S \square *	1.5 kW	MDDHT3420	
			MDME204S \square *	2.0 kW	MEDHT4430	E-frame
			MDME304S \square *	3.0 kW	MFDHT5440	F-frame
			MDME404S \square *	4.0 kW	MFDHTA464	
			MDME504S \square *	5.0 kW		
		1500r/min	MDME754S1 *	7.5 kW	MGDHTB4A2	G-frame
			MDMEC14S1 *	11.0kW	MHDHTB4A2	H-frame
			MDMEC54S1 *	15.0kW		

[^3]- Suffix of " * " in the applicable motor model represents the motor structure.
- Default of the driver is set for the incremental encoder specifications.

When you use in absolute, make the following operations.
a) Install a battery for absolute encoder.
b) Switch the parameter Pr0.15 (Absolute encoder setup) from "1 (default)" to "0".

- Only for position control type does not support the 17-bit absolute specification.

It supports only 20-bit incremental specification.

Motor					Driver	
Power supply	Type	Rated rotational speed	Model	Rated output	Model of velocity, position, torque and full-closed control type	Frame
$\begin{array}{\|c} \hline \text { Single/3-phase, } \\ 200 \mathrm{~V} \end{array}$	MFME Middle inertia	2000r/min	MFME152S1 *	1.5kW	MDDHT5540	D-frame
3 -phase,			MFME252S1 *	2.5 kW	MEDHT7364	E-frame
			MFME452S1 *	4.5 kW	MFDHTB3A2	F-frame
3-phase, 400V			MFME154S1 *	1.5 kW	MDDHT3420	D-frame
			MFME254S1 *	2.5 kW	MEDHT4430	E-frame
			MFME454S1 *	4.5 kW	MFDHTA464	F-frame
$\begin{array}{\|c} \hline \text { Single/3-phase, } \\ 200 \mathrm{~V} \end{array}$	MGME Middle inertia	1000r/min	MGME092S \square *	0.9 kW	MDDHT5540	D-frame
3-phase, 200 V			MGME202S \square *	2.0kW	MFDHTA390	F-frame
			MGME302S \square *	3.0 kW	MFDHTB3A2	
			MGME452S1*	4.5 kW		
			MGME602S1*	6.0kW	MGDHTC3B4	G-frame
3 -phase, 400 V			MGME094S \square^{*}	0.9 kW	MDDHT3420	D-frame
			MGME204S \square^{*}	2.0 kW	MFDHT5440	F-frame
			MGME304S \square^{*}	3.0 kW	MFDHTA464	
			MGME454S1*	4.5 kW		
			MGME604S1 *	6.0 kW	MGDHTB4A2	G-frame
Single/ 3 -phase, 200 V	MHME High inertia	2000r/min	MHME102S \square *	1.0kW	MDDHT3530	D-frame
			MHME152S \square *	1.5 kW	MDDHT5540	
3-phase, 200V			MHME202S \square *	2.0kW	MEDHT7364	E-frame
			MHME302S \square *	3.0 kW	MFDHTA390	F-frame
			MHME402S \square *	4.0kW	MFDHTB3A2	
			MHME502S \square *	5.0 kW		
		1500r/min	MHME752S1*	7.5 kW	MGDHTC3B4	G-frame
3-phase, 400 V		2000r/min	MHME104S \square^{*}	1.0kW	MDDHT2412	D-frame
			MHME154S \square^{*}	1.5 kW	MDDHT3420	
			MHME204S \square *	2.0 kW	MEDHT4430	E-frame
			MHME304S \square^{*}	3.0kW	MFDHT5440	F-frame
			MHME404S \square *	4.0 kW	MFDHTA464	
			MHME504S \square *	5.0 kW		
		1500r/min	MHME754S1 *	7.5 kW	MGDHTB4A2	G-frame

Note ...: Suffix of " \square " in the applicable motor model represents design order.

- Suffix of " * " in the applicable motor model represents the motor structure.
- Default of the driver is set for the incremental encoder specifications.

When you use in absolute, make the following operations.
a) Install a battery for absolute encoder.
b) Switch the parameter Pr0.15 (Absolute encoder setup) from "1 (default)" to "0".

- Only for position control type does not support the 17-bit absolute specification. It supports only 20-bit incremental specification.

Before Using the Products
4. Check of the Combination of the Driver and the Motor

Junction cable for motor

Encoder cable

Motor series	Incremental Specifications, 20-bit ${ }^{\text {Note)1 }}$	Absolute Specifications, 17-bit ${ }^{\text {Note)1 }}$	Detail page
MSMD 50W to 750W	MFECA0 ** 0EAM	-	7-98
$\begin{array}{ll} \text { MSME } & \text { 50W } \\ & \text { to } 750 \mathrm{~W}(200 \mathrm{~V}) \end{array}$	MFECAO ** OMJD (Highly bendable type, Direction of motor shaft) MFECAO ** OMKD (Highly bendable type, Opposite direction of motor shaft) MFECAO ** OTJD (Standard bendable type, Direction of motor shaft) MFECAO ** OTKD (Standard bendable type, Opposite direction of motor shaft)	MFECAO ** OMJE (Highly bendable type, Direction of motor shaft) MFECAO ** OMKE (Highly bendable type, Opposite direction of motor shaft) MFECAO ** OTJE (Standard bendable type, Direction of motor shaft) MFECAO ** OTKE (Standard bendable type, Opposite direction of motor shaft)	$\begin{aligned} & 7-98 \\ & 7-99 \end{aligned}$
MSME 750W (400V), 1.0 kW to 5.0 kW	MFECAO ** OESD ${ }^{\text {note) }}{ }^{2}$ MFECAO ** OETD ${ }^{\text {note })} 3$	$\begin{aligned} & \text { MFECAO ** OESE } \\ & \text { MFECAO }{ }^{* *} \text { OETE }{ }^{\text {note })} 3 \\ & \hline \end{aligned}$	$\begin{gathered} 7-99 \\ \text { to } \\ 7-100 \end{gathered}$
MDME 400W to 15.0kW	$\begin{aligned} & \hline \text { MFECAO }^{* *} \text { OESD note) } \\ & \text { MFECAO }{ }^{* *} \text { OETD }{ }^{\text {note }) 3} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { MFECAO }^{* *} \text { OESE } \\ & \text { MFECAO }{ }^{\text {note })} \text { 2 }{ }^{2} \\ & \hline \end{aligned}$	
MFME 1.5 kW to 4.5 kW	MFECA0 ** 0ETD	MFECA0 ** 0ETE	
MGME 0.9 kW to 6.0kW	$\begin{aligned} & \text { MFECA0 ** OESD }{ }^{\text {note })}{ }^{2} \\ & \text { MFECA0 }{ }^{* *} \text { OETD }{ }^{\text {note } 3} \end{aligned}$	$\begin{aligned} & \text { MFECAO ** OESE note) } 2 \\ & \text { MFECAO ** 0ETE note } 3 \end{aligned}$	
MHMD 200W to 750W	MFECA0 ** 0EAM	-	
MHME 1.0kW to 7.5 kW	$\begin{aligned} & \text { MFECAO }{ }^{* *} \text { OESD } \\ & \text { MFECAO }{ }^{\text {note }}{ }^{2} \text { OETD } \end{aligned}$	$\begin{aligned} & \text { MFECAO ** OESE note) } 2 \\ & \text { MFECAO ** 0ETE note) } \end{aligned}$	

Note) 1 " **" represents the cable length. Note)2 Design order: C (0.9 kW to 5.0 kW (MGME: to 3.0 kW)) Note)3 Design order:1

Motor cable/ Brake cable

Motor series	Motor cable ${ }^{\text {Note)1 }}$		Brake cable ${ }^{\text {Note)1 }}$	Detail page
	without Brake	with Brake		
MSMD 50W to 750W	MFMCAO ** OEED	-	MFMCB0 ** 0GET	$\begin{array}{\|l\|} \hline 7-101 \\ 7-106 \end{array}$
MSME 50W to 750W		-		$\begin{aligned} & 7-101 \\ & 7-106 \end{aligned}$
MSME 1.0kW to 2.0kW (200V)	MFMCD0 ** 2ECD	MFMCAO ** 2FCD	-	$\begin{gathered} 7-102 \\ \text { to } \\ 7-106 \end{gathered}$
MSME 750W to 2.0kW (400V)		MFMCE0 ** 2FCD		
MSME 3.0 kW to 5.0 kW	MFMCA0 ** 3ECT	MFMCA0 ** 3FCT		
MDME 1.0kW to 2.0kW (200V)	MFMCDO ** 2ECD	MFMCAO ** 2FCD	-	
MDME 400W to 2.0kW (400V)		MFMCEO ** 2FCD		
MDME 3.0 kW to 5.0 kW	MFMCA0 ** 3ECT	MFMCA0 ** 3 FCT		
MFME 1.5kW (200V)	MFMCAO ** 2ECD	MFMCA0 ** 2FCD	-	
MFME 1.5 kW (400V)	MFMCFO ** 2FCD	MFMCEO ** 2FCD		
MFME 2.5 kW	0 2	MFMCEO		
MFME 4.5 kW	MFMCD0 ** 3ECT	MFMCA0 ** 3FCT		
MGME 0.9kW (200V)	MFMCDO ** 2ECD	MFMCA0 ** 2FCD	-	
MGME 0.9kW (400V)		MFMCEO ** 2FCD		
MGME 2.0 kW to 4.5 kW	MFMCA0 ** 3 ECT	MFMCA0 ** 3FCT		
MHMD 200W to 750W	MFMCA0 ** 0EED	-	MFMCB0 ** 0GET	
MHME 1.0kW, 1.5kW (200V)	MFMCDO ** 2ECD	MFMCAO ** 2FCD	-	
MHME 1.0kW, 1.5kW (400V)		MFMCE0 ** 2FCD		
MHME 2.0kW	MFMCE0 ** 2ECD			
MHME 3.0 kW to 5.0 kW	MFMCA0 ** 3 ECT	MFMCA0 ** 3FCT		

Note)1 " **" represents the cable length.

[^4]Related page $\cdots \cdot{ }^{\circ}$ - For other cable, connector and connector kit, refer to P.7-100 "Options"

5. Installation

Driver

Install the driver properly to avoid a breakdown or an accident.

Installation Place

1) Install the driver in a control panel enclosed in noncombustible material and placed indoor where the product is not subjected to rain or direct sunlight. The products are not waterproof.
2) Where the products are not subjected to corrosive atmospheres such as hydrogen sulfide, sulfurous acid, chlorine, ammonia, sulfur, chloric gas, sulfuric gas, acid, alkaline and salt and so on, and are free from splash of inflammable gas.
3) Where the motor is free from grinding oil, oil mist, iron powder or chips.
4) Well-ventilated and low humidity and dust-free place.
5) Vibration-free place.
6) Do not use benzine, thinner, alcohol, acidic cleaner and alkaline cleaner because they can discolor or damage the exterior case.

Environmental Conditions

Item	Conditions
Ambient temperature	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ (free from freezing)
Ambient humidity	20% to $85 \% \mathrm{RH}$ (free from condensation)
Storage temperature ${ }^{* 1}$	$-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ (Max. temperature guarantee: $80^{\circ} \mathrm{C}$ for 72 hours free from condensation ${ }^{* 2}$)
Storage humidity	20% to $85 \% \mathrm{RH}$ (free from condensation ${ }^{* 2}$)
Vibration	Lower than $5.88 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}), 10$ to 60 Hz (Do not continuously use the driver for along time at the resonance point.)
Altitude	Lower than 1000 m

*1 Extreme temperatures are permissible only for short period such as during transportation.
*2 Air containing water vapor will become saturated with water vapor as the temperature falls, causing dew.

How to Install

1) Rack-mount type. Install in vertical position, and reserve enough space around the servo driver for ventilation.
2) Base mount (rear mount) is standard for $A / B / C / D-f r a m e ~ d r i v e r . ~$
3) To change the mounting surface of $A / B / C / D$-frame driver, use the optional mounting bracket. For choosing the correct optional mounting bracket, refer to P.7-119 "Mounting Bracket".
4) In consideration of strength of the screws and the material of the mounting base, select appropriate fastening torque for the product mounting screws, so that the screws will not be loosened or damaged.
Example) To tighten a steel screw into a steel base
A to G-frame: M5 2.7 to 3.3 N•m, H-frame: M6 4.68 to $5.72 \mathrm{~N} \cdot \mathrm{~m}$

A to D-frame Basemount (Standard) [Rear mount]

Frontmount
[Use mounting bracket]

E to G-frame
Front or rearmount [Use mounting bracket]

H-frame
Rearmount [Basemount]

Fastening torque of ground terminal (M4) to be 0.7 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$.

 Fastening torque of ground terminal (M4) to be 0.7 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$.
$<$ F, G-frame> Fastening torque of ground terminal (M5) to be 1.4 to $1.6 \mathrm{~N} \cdot \mathrm{~m}$.

Fastening torque of ground terminal (M6) to be 2.4 to $2.6 \mathrm{~N} \cdot \mathrm{~m}$.

Mounting Direction and Spacing

- Reserve enough surrounding space for effective cooling.
- Install fans to provide uniform distribution of temperature in the control panel.
- D to H -frame is provided with a cooling fan at the bottom. (On the H -frame, the cooling fan is also installed on the upper side.)
- Observe the environmental conditions of the control panel described in the previous page.

Note . \because It is recommended to use the conductive paint when you make your own mounting bracket, or repaint after peeling off the paint on the machine for installing the products, in order to make noise countermeasure.

Caution on Installation

- Whenever lifting the product (during transportation/installation of H frame servo driver), two or more persons should hold it by metallic member, not by plastic member.
- We have been making the best effort to ensure the highest quality, however, application of exceptionally large external noise disturbance and static electricity, or failure in input power, wiring and components may result in unexpected action. It is highly recommended that you make a fail-safe design and secure the safety in the operative range.
- If stranded wires are used as the cable, bunch the conductors of the cable using a rod terminals or a round terminals. If stranded wires are used as they are, unexpected accidents such as an electric shock and short circuit or injury may result.
- There might be a chance of smoke generation due to the failure of these products. Pay an extra attention when you apply these products in a clean room environment.
- Be sure to install a no-fuse breaker in the power supply. In addition, be sure to ground the grounding terminal or grounding wire provided. (In order to prevent electric shock and malfunctions, Class D grounding (grounding resistance of 100Ω or less) is recommended.) If the product is grounded insufficiently, not only the driver may not deliver its performance sufficiently, but also safety hazards such as a malfunction due to a electrification or a disturbance may be caused.
- If electric wires are bound and run through metal duct, they cannot carry the rated current due to temperature rise. If they are forced to carry the rated current, they may burn. When determining size of the wire.
- Do not use or store the product in a place subject to $5.88 \mathrm{~m} / \mathrm{s}^{2}$ or more vibration or shock, foreign materials such as dust, metallic powder and oilmist, liquids such as water, oil and grinding fluid, close to flammable materials, or in an atmosphere of corrosive gas $\left(\mathrm{H}_{2} \mathrm{~S}, \mathrm{SO}_{2}, \mathrm{NO}_{2}, \mathrm{Cl}_{2}\right.$, etc.) or inflammable gas under any circumstance.
Related page ...?: P.1-11 "Specifications" • P.1-32 "Installation of motor"
-P.7-73 "Dimensions" • P.7-119 "Mounting bracket"
- Be sure to conduct wiring properly and securely. Insecure or improper wiring may cause the motor running out of control or being damaged from overheating. In addition, pay attention not to allow conductive materials, such as wire chips, entering the driver during the installation and wiring.
- Secure the screws and earth screw on the terminal block with the torque specified in the specification.
-When establishing a system using safety functions, completely understand the applicable safety standards and the operating instruction manual or technical documents for the product.
- Never make an approach to the motor and the machine(s) driven by the motor while power is applied because they may become failure or malfunction.
- Do not use servo-on signal (SRV-ON) as the start/stop signal. Doing so may damage the built-in dynamic brake circuit in the driver.
- Pay attention to the heat dissipation. The driver will generate heat while the motor is in operation. Using the driver in a sealed control box may cause an abnormal heating of the control box. A proper consideration should be given to cool the driver so that the ambient temperature matches the specified operating temperature range.
- There is a possibility that the motor will be damaged by heat or emit smoke or dust due to a fault in the motor itself or the driver coupled with it. A proper consideration should be given if the motor is used in a clean room or similar environment.
- The upper fan on the H -frame driver stops during servo OFF to save energy. This is normal.
- If the dynamic brake is applied during operation at a high speed, provide approx. 10-minute dwell period.
Restarting the motor earlier may cause a broken wire in the dynamic brake making the brake inoperable.
- The capacitance of capacitor in the power supply rectifier circuit decreases its capacitance with age.
To prevent a secondary accident due to malfunction, it should be replaced with new one after 5 -year use.
Replacement should be performed by us or our authorized distributor.
- Before using the product, be sure to read the instruction manual (Safety part).

Recommended Electric Wires for Driver

- For the main circuit, use electric wire that withstands at least 600 VAC with temperature rating $75^{\circ} \mathrm{C}$ or higher.
- When using bundled wires running through metallic conduit, the amounts of current determined according to the reduction rate must be subtracted from the nominal allowable current.

- Electric wires

<In high ambient temperature>

Use heat resistant wire.
Common polyvinyl chloride wires will deteriorate by heat at a higher rate.
<In low ambient temperature>
The surface of vinyl chloride insulation becomes hardened and brittle at low temperature and needs specific protective measure when used in cold region.

- Bend radius of the cable must be 10 times or more its finish outside diameter.
- Cables cannot be used for continuous regeneration because they are not designed for such application.

Relationship between Wire Diameter and Permissible Current

- When selecting a cable, refer to the following selection guide showing relationship between cable specification and current carrying capacity.
Example: Power supply 3-phase, $200 \mathrm{~V}, \mathbf{3 5} \mathrm{~A}$, ambient temperature $30^{\circ} \mathrm{C}$
Determine the fundamental permissible current according to the cable conductor material (example: stranded copper wire). (For the purpose of this example, the ampere indicated by \diamond is selected from the table right.)
Next, determine the number of conductors. (In this example, the cable contains 4 conductors ($3+$ ground).) Determine the applicable permissible current using the following formula.

Applicable permissible current

= fundamental permissible current x current reduction coefficient x current correction coefficient
$=37 \times 0.7 \times 1.414$
$\doteqdot 36.6$ (A)
This permissible value is larger than 35 A to be carried though the cable. Therefore, according to the list of recommended eco-cables, the cable to be selected for the cable with nominal cross section 3.5 mm^{2} is a polyethylene-insulated heat-resistant 4 -conductor power cable having 13.5 mm finish O.D. (approx. 14.5 mm with shield).

<Supplement>

- The current correction coefficient is determined using the following formula:

$$
\sqrt{(\text { Max. permissible temp. - ambient temp. }) \div 30}
$$

Caution $\cdots: \quad$ The current correction coefficient is determined according to the cable. Check the specification of the cable used.

- The current reduction coefficient is provided for the case where the cable (4-conductor cable in the case of example), is housed in plastic race/sheath, plastic tube, metal race/ sheath, metal tube or flexible conduit.

Caution -..8

Because the neutral conductor is not counted as a wire, the current reduction coefficient for " 3 or less" is applied as indicated by (O) in the table right.

- Recommended eco-cable

- Current reduction coefficient

No. of wires in a tube	Coefficient
Up to 3	$\mathbf{0 . 7 0}$
4	0.63
5 or 6	0.56
7 to 15	0.49
16 to 40	0.43
41 to 60	0.39
61 or more	0.34

Wire category: 4-conductor polyethylene-insulated power cable with heat-resistant polyethylene sheath (Standard: EM JIS C 3605) Maximum permissible temperature: $90^{\circ} \mathrm{C}$

Conductor			Insulation thickness (mm)	Sheath thickness (mm)	$\begin{array}{\|c} \text { (Reference) } \\ \text { Finish O.D. } \\ (\mathrm{mm}) \end{array}$	Max. conductor resistance ($20^{\circ} \mathrm{C}$) (W/km)	Test voltage (V/1 min.)	Minimum insulation resistance (MW•km)	(Reference) Approx. mass (kg/km)
Nominal cross section (mm²)	Structure or shape (wires/mm²)	Outside diameter (mm)							
2	7/0.6	1.8	0.8	1.5	12.0	9.42	1500	2500	170
3.5	7/0.8	2.4	0.8	1.5	13.5	5.30	1500	2500	250
5.5	7/1.0	3.0	1.0	1.5	16.0	3.40	1500	2500	360
8	7/1.2	3.6	1.0	1.5	17.0	2.36	1500	2000	475
14	Circular compression	4.4	1.0	1.5	19.0	1.34	2000	1500	730
22	Circular compression	5.5	1.2	1.6	23	0.849	2000	1500	1100
38	Circular compression	7.3	1.2	1.8	28	0.491	2500	1500	1800
60	Circular compression	9.3	1.5	2.0	35	0.311	2500	1500	2790
100	Circular compression	12.0	2.0	2.4	44	0.187	2500	1500	4630
150	Circular compression	14.7	2.0	2.6	51	0.124	3000	1000	6710
200	Circular compression	17.0	2.5	2.9	60	0.0933	3000	1500	8990

Caution ... Shield will increase finish outside diameter by approx. 1 mm .

- Appropriate cable should be selected to have sufficient allowance for parameters such as operating ambient temperature and current.
- Current reduction coefficient, fundamental permissible current, etc., stated on this page are subject to change due to e.g. standard revision. Consult cable manufacturers for the latest information.

5. Installation

Motor

Install the motor properly to avoid a breakdown or an accident.

Installation Place

Since the conditions of location affect a lot to the motor life, select a place which meets the conditions below.

1) Indoors, where the products are not subjected to rain or direct sun beam. The products are not waterproof.
2) Where the products are not subjected to corrosive atmospheres such as hydrogen sulfide, sulfurous acid, chlorine, ammonia, sulfur, chloric gas, sulfuric gas, acid, alkaline and salt and so on, and are free from splash of inflammable gas.
3) Where the motor is free from grinding oil, oil mist, iron powder or chips.
4) Well-ventilated and humid and dust-free place, far apart from the heat source such as a furnace.
5) Easy-to-access place for inspection and cleaning
6) Vibration-free place.
7) Avoid enclosed place. Motor may gets hot in those enclosure and shorten the motor life.

Environmental Conditions

Item	Conditions	
Ambient temperature*1	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ (free from freezing)	
Ambient humidity	20% to $85 \% \mathrm{RH}$ (free from condensation)	
Storage temperature $^{* 2}$	$-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ $\left(\right.$ Max. temperature guarantee: $80^{\circ} \mathrm{C}$ for 72 hours free from condensation ${ }^{* 5}$)	
Storage humidity	20% to $85 \% \mathrm{RH}$ (free from condensation ${ }^{* 5}$)	
Vibration	Motor only	Lower than $49 \mathrm{~m} / \mathrm{s}^{2}(5 \mathrm{G})$ at running, $24.5 \mathrm{~m} / \mathrm{s}^{2}(2.5 \mathrm{G})$ at stall
Impact	Motor only	Lower than $98 \mathrm{~m} / \mathrm{s}^{2}(10 \mathrm{G})$
Enclosure rating	Motor only (Connector type)	IP67 (except rotating portion of output shaft and connecting pin part of the motor connector and the encoder connector) $)^{* 3 * 4}$
Altitude		Lower than 1000 m

*1 Ambient temperature to be measured at 5 cm away from the motor.
*2 Permissible temperature for short duration such as transportation.
*3 These motors conform to the test conditions specified in EN standards (EN60529, EN60034-5). Do not use these motors in application where water proof performance is required such as continuous wash-down operation.
*4 This condition is applied when the connector mounting screw in case of motor 750W or less are tightened to the recommended tightening torque (Refer to P.2-11, 2-48). Be sure to use mounting screw supplied with the connector. Correctly install and secure the gasket supplied with the cable connector.
*5 Air containing water vapor will become saturated with water vapor as the temperature falls, causing dew.

How to Install

You can mount the motor either horizontally or vertically as long as you observe the followings.

1) Horizontal mounting

- Mount the motor with cable outlet facing downward for water/oil countermeasure.

2) Vertical mounting

- Use the motor with oil seal (make-to-order in case of motor 750W or less) when mounting the motor with gear reducer to prevent the reducer oil/grease from entering to the motor.

OilWater Protection

1) Don't submerge the motor cable to water or oil.
2) Install the motor with the cable outlet facing downward.
3) Avoid a place where the motor is always subjected to oil or water.
4) Use the motor with an oil seal when used with the gear reducer, so that the oil may not enter to the motor through shaft.

Stress to Cables

1) Avoid a stress application to the cable outlet and connecting portion by bending or selfweight.
2) Especially in an application where the motor itself travels, fix the junction cable into the bearer so that the stress by bending can be minimized.
3) Take the cable bending radius as large as possible. (When you use our optional cable, Minimum R20mm)

Permissible Load to Output Shaft

1) Design the mechanical system so that the applied radial load and/or thrust load to the motor shaft at installation and at normal operation can meet the permissible value specified to each model.
2) Pay an extra attention when you use a rigid coupling. (Excess bending load may damage the shaft or deteriorate the bearing life.)
3) Use a flexible coupling with high stiffness designed exclusively for servo application in order to make a radial thrust caused by micro misalignment smaller than the permissible value.

Note For permissible load of each model, refer to P.1-35, "Permissible Load at Output Shaft".

Notes on Installation

1) Do not apply direct impact to the shaft by hammer while attaching/detaching a coupling to and from the motor shaft.
(Or it may damage the encoder mounted on the other side of the shaft.)
2) Make a full alignment. (incomplete alignment may cause vibration and damage the bearing.)
3) If the motor shaft is not electrically grounded, it may cause electrolytic corrosion to the bearing depending on the condition of the machine and its mounting environment, and may result in the bearing noise. Check and verification by customer is required.
[^5]
Wiring Precautions on Movable Section

When wiring cable bear, take the following precautions:

- Cable bear wiring

The bend radius of the cable must be 10 times or more its finish outside diameter.
(For finish outside diameter, refer to P.1-31 How to Install, "Relationship between Wire Diameter and Permissible Current" and associated tables.)
Do not fix or bundle wires in the cable bear.
When securing the cable, fix it only at non-movable ends of the cable bear where the cable is free from any stress (e.g. tension). (Avoid tight lock.)
[Recommended cable bear wiring]

Caution \cdots Do not keep the cable loosened (too long) or under tension (too short).
Otherwise, the sheath will be cracked by internal wall of the cable bear, tangled by other cable, etc., causing unpredictable troubles.

- Cable distortion

Keep the cable free from twists or kinks.
Distorted cable will cause loose connection, lowering performance and reliability.

- Lamination factor of cable in cable bear

Place cables on a flat surface in parallel without bringing them into contact with each other and measure the dimension necessary to cover these cables. Then select a cable bear which is wider than the measured dimension.
The lamination factor of cables should be lower than 60\% (recommended factor is 30\% or below).
Do not run smaller and larger size cables in the same cable bear. Thin cables may break under the pressure of thick cables. If it is necessary to mix cables of different size, isolate them by using suitable separating material such as partition.
[Wiring arrangement in cable bear - example]

Before Using the Products
6. Permissible Load at Output Shaft

Motor

Radial load (P) direction

Thrust load (A and B) direction

Unit : N (1kgf=9.8N)

Motor series	Motor output	At assembly			During running	
		Radial thrust	Thrust load		Radial thrust	Thrust load A and B-direction
			A-direction	B-direction		
MSMD	50W, 100W	147	88	117.6	68.6	58.8
	200W, 400W	392	147	196	245	98
	750W	686	294	392	392	147
MSME	50W, 100W	147	88	117.6	68.6	58.8
	200W, 400W	392	147	196	245	98
	750W (200V)	686	294	392	392	147
	$\begin{aligned} & \hline 750 \mathrm{~W}(400 \mathrm{~V}), \\ & 1.0 \mathrm{~kW}, 1.5 \mathrm{~kW}, \\ & 2.0 \mathrm{~kW}, 3.0 \mathrm{~kW} \end{aligned}$	980	588	686	490	196
	4.0kW, 5.0kW				784	343
MDME	400W to 2.0kW	980	588	686	490	196
	3.0 kW				784	343
	4.0 kW	1666	784	980		
	5.0 kW					
	7.5 kW	2058	980	1176	1176	490
	11.0kW, 15.0kW	4508	1470	1764	2254	686
MGME	0.9 kW	980	588	686	686	196
	2.0 kW	1666	784	980	1176	490
	3.0 kW	2058	980	1176	1470	
	4.5 kW				1470	
	6.0 kW				1764	588
MFME	1.5 kW	980	588	686	490	196
	$2.5 \mathrm{~kW}, 4.0 \mathrm{~kW}$	1862	686		784	294
MHMD	200W, 400W	392	147	196	245	98
	750W	686	294	392	392	147
MHME	1.0kW, 1.5kW	980	588	686	490	196
	2.0 kW to 5.0 kW	1666	784	980	784	343
	7.5 kW	2058	980	1176	1176	490

Note When the load point varies, calculate the permissible radial load, $\mathrm{P}(\mathrm{N})$ from the distance of the load point, $L(\mathrm{~mm})$ from the mounting flange based on the formula of the right table, and make it smaller than the calculated result.

Motor series	Motor output	Formula of Load and load point relation	Motor series	Motor output	Formula of Load and load point relation
MSMD	50W	$\mathrm{P}=\frac{3533}{\mathrm{~L}+39}$	MGME	0.9kW	$\mathrm{P}=\frac{33957}{L+14.5}$
	100W	$\mathrm{P}=\frac{4905}{\mathrm{~L}+59}$		2.0kW	$\mathrm{P}=\frac{69384}{\mathrm{~L}+19}$
	200W	$P=\frac{14945}{L+46}$		3.0kW	$P=\frac{86730}{L+19}$
	400W	$\mathrm{P}=\frac{19723}{\mathrm{~L}+65.5}$		$\begin{aligned} & 4.5 \mathrm{~kW} \\ & 6.0 \mathrm{~kW} \end{aligned}$	$\mathrm{P}=\frac{89964}{\mathrm{~L}+20}$
	750W	$\mathrm{P}=\frac{37044}{L+77}$	MFME	1.5 kW	$\mathrm{P}=\frac{25235}{\mathrm{~L}+19}$
MSME	50W	$\mathrm{P}=\frac{3533}{\mathrm{~L}+39}$		2.5 kW	$P=\frac{40376}{L+19}$
	100W	$\mathrm{P}=\frac{4905}{\mathrm{~L}+59}$		4.0kW	$\mathrm{P}=\frac{42336}{L+19}$
	200W	$P=\frac{14945}{L+46}$	MHMD	200W	$\mathrm{P}=\frac{14945}{L+46}$
	400W	$\mathrm{P}=\frac{19723}{\mathrm{~L}+65.5}$		400W	$\mathrm{P}=\frac{19723}{\mathrm{~L}+65.5}$
	750W (200V)	$\mathrm{P}=\frac{37044}{L+77}$		750W	$\mathrm{P}=\frac{37044}{\mathrm{~L}+77}$
	750W (400V) 1.0kW to 3.0kW	$P=\frac{20090}{L+13.5}$	MHME	$\begin{aligned} & 1.0 \mathrm{~kW} \\ & 1.5 \mathrm{~kW} \end{aligned}$	$\mathrm{P}=\frac{24255}{\mathrm{~L}+14.5}$
	4.0kW 5.0 kW	$\mathrm{P}=\frac{36848}{L+14.5}$		2.0kW to 5.0kW	$\mathrm{P}=\frac{46256}{\mathrm{~L}+19}$
MDME	$\begin{aligned} & \text { 400W } \\ & 600 \mathrm{~W} \end{aligned}$	$\mathrm{P}=\frac{20090}{\mathrm{~L}+13.5}$		7.5kW	$\mathrm{P}=\frac{89964}{L+20}$
	1.0 kW to 2.0 kW	$P=\frac{20580}{L+14.5}$			
	3.0kW	$P=\frac{36848}{L+14.5}$			
	$\begin{aligned} & 4.0 \mathrm{~kW} \\ & 5.0 \mathrm{~kW} \end{aligned}$	$P=\frac{42336}{L+19}$			
	7.5kW	$\mathrm{P}=\frac{89946}{L+20}$			
	$\begin{aligned} & 11.0 \mathrm{~kW} \\ & 15.0 \mathrm{~kW} \end{aligned}$	$P=\frac{200606}{L+31}$			

2. Preparation

1. Conformance to international standards
EC Directives 2-2
Composition of Peripheral Equipments 2-6
2. System Configuration and Wiring
Driver and List of Applicable Peripheral Equipments 2-10
A to G-frame, 100/200 V type:2-12
2-16
E-frame, 200 V type: Overall Wiring/ Wiring of the Main Circuit/ Wiring Diagram 2-20Overall Wiring/ Wiring of the Main Circuit/ Wiring Diagram
G-frame, 200 V type: Overall Wiring/ Wiring of the Main Circuit/ Wiring Diagram 2-24
H-frame, 200 V type: Overall Wiring/ Wiring of the Main Circuit/ Wiring Diagram. 2-28
D, E-frame, 400 V type: Overall Wiring/ Wiring of the Main Circuit/ Wiring Diagram 2-32
F-frame, 400 V type: Overall Wiring/ Wiring of the Main Circuit/ Wiring Diagram 2-36
G-frame, 400 V type: Overall Wiring/ Wiring of the Main Circuit/ Wiring Diagram 2-40H-frame, 400 V type: Overall Wiring/ Wiring of the Main Circuit/ Wiring Diagram...2-44Specifications of Motor connector2-48
Wiring method to connector 2-50
3. Wiring to the connector, X 1
Connecting host computer 2-51
4. Wiring to the connector, X2
Connecting communication connecto 2-51
5. Wiring to the connector, X3 Safety function connector 2-53
6. Wiring to the connector, X4
Connection to Host Controller. 2-54
7. Wiring to the connector, X 5
Connect on to External Scale 2-55
8. Wiring to the connector, X6 Connection to Encoder 2-57
9. Wiring to the connector, X7 Monitor output 2-60
10. Timing Chart
Timing on power-up 2-61
Alarm 2-62
Servo-Lock 2-63
Servo-ON/OFF 2-64
11. Built-in Holding Brake Outline 2-65
Specifications 2-66
12. Dynamic Brake
Outline 2-67
Connections of external dynamic brake resistor (Example) 2-68
Condition setting chart -70
13. Setup of Parameter and Mode
Outline / Setup / Connection 2-72
Composition and List of Parameters 2-73
List of Parameters 2-74
Setup of Torque Limit 2-82
14. Setup of command division and multiplication ratio (electronic gear ratio)
Relation between Electronic Gear and Position Resolution or Traveling Speed 2-84
15. How to Use the Front Panel
Setup 2-86
Structure of Each Mode 2-88
Setup of front panel lock 2-90
Monitor Mode (SELECTION display) 2-91
Monitor Mode (EXECUTION display) 2-92
Parameter Setup Mode 2-106
EEPROM Writing Mode 2-107
Auxiliary Function Mode (SELECTION display) 2-108
Auxiliary Function Mode (EXECUTION display) 2-109

1. Conformance to international standards
 EC Directives

EC Directives

The EC Directives apply to all such electronic products as those having specific functions and have been exported to EU and directly sold to general consumers. Those products are required to conform to the EU unified standards and to furnish the CE marking on the products.
However, our AC servos meet the relevant EC Directives for Low Voltage Equipment so that the machine or equipment comprising our AC servos can meet EC Directives.

EMC Directives

MINAS Servo System conforms to relevant standard under EMC Directives setting up certain model (condition) with certain locating distance and wiring of the servo motor and the driver. And actual working condition often differs from this model condition especially in wiring and grounding. Therefore, in order for the machine to conform to the EMC Directives, especially for noise emission and noise terminal voltage, it is necessary to examine the machine incorporating our servos.

Conformity to UL Standards

Observe the following conditions of (1) and (2) to make the system conform to UL508C (E164620).
(1) Use the driver in an environment of Pollution Degree 2 or 1 prescribed in IEC60664-1. (e.g. Install in the control box with IP54 enclosure.)
(2) Make sure to install a circuit breaker or fuse which are UL recognized (Listed (1L) marked) between the power supply and the noise filter.

Remarks...

Use a copper cable with temperature rating of $75^{\circ} \mathrm{C}$ or higher.

Note

For rated current of circuit breaker and fuse, refer to P.2-10 "Driver and List of Applicable Peripheral Equipments".
(3) Over-load protection level

Over-load protective function will be activated when the effective current exceeds 115% or more than the rated current based on the time characteristics (see the next page). Confirm that the effective current of the driver does not exceed the rated current. Set up the peak permissible current with Pr0.13 (Setup of 1st torque limit) and Pr5.22 (Setup 2nd torque limit).
(4) Motor over-temperature protection is not provided.

Motor over-load-temperature protection shall be provided at the final installation upon required by the NEC (National Electric Code).

SEMI F47

- Includes a function in compliance with the SEMI F47 standard for voltage sag immunity under no load or light load.
- Ideal for the semiconductor and LCD industries.

Caution … (1) Excluding the single-phase $100-\mathrm{V}$ type.
(2) Please verify the actual compliance of your machine with the F47 standard for voltage sag immunity.

Conformed Standards

		Driver	Motor
EC Directives	EMC Directives	$\begin{aligned} & \text { EN55011 } \\ & \text { EN61000-6-2 } \\ & \text { EN61800-3 } \end{aligned}$	-
	Low-Voltage Directives	EN61800-5-1	$\begin{aligned} & \hline \text { EN60034-1 } \\ & \text { EN60034-5 } \end{aligned}$
	Machinery Directives Functional safety	$\begin{aligned} & \text { EN954-1 (Cat. 3) } \\ & \text { ISO13849-1 (PL c,d²) (Cat. 3) } \\ & \text { EN61508 (SIL 2) } \\ & \text { EN62061 (SIL 2) } \\ & \text { EN61800-5-2 (STO) } \\ & \text { IEC61326-3-1 } \end{aligned}$	-
UL Standards		UL508C (E164620)	$\begin{aligned} & \text { UL1004-1 } \\ & \binom{\text { E327868: to } 750 \mathrm{~W}(200 \mathrm{~V})}{\quad \text { from } 6.0 \mathrm{~kW}} \\ & \text { UL1004 } \\ & \left(\begin{array}{l} \text { E327868: 400W }(400 \mathrm{~V}) \\ 600 \mathrm{~W}(400 \mathrm{~V}), 750 \mathrm{~W}(400 \mathrm{~V}) \\ 0.9 \mathrm{~kW} \text { to } 5.0 \mathrm{~kW} \end{array}\right. \end{aligned}$
CSA Standards		C22.2 No. 14	C22.2 No. 100

IEC : International Electrotechnical Commission
EN : Europaischen Normen
EMC : Electromagnetic Compatibility
UL : Underwriters Laboratories
CSA : Canadian Standards Association
Pursuant to the directive 2004/108/EC, article 9(2)
Panasonic Testing Centre
Panasonic Service Europe, a division of
Panasonic Marketing Europe GmbH
Winsbergring 15, 22525 Hamburg, F.R. Germany

- Only for position control type does not support functional safety ${ }^{\left({ }^{*-1}\right)}$ standards.
*2 PL d: Provided that EDM is used.

Caution \cdots. Use options correctly after reading Operating Instructions of the options to better understand the precautions.
Take care not to apply excessive stress to each optional part.

Installation Environment

Use the servo driver in the environment of Pollution Degree 1 or 2 prescribed in IEC-60664-1 (e.g. Install the driver in control panel with IP54 protection structure.)

*1 A to D-frame: Noise filter for signal lines, E to H-frame: Noise filter for signal lines <Power supply cable> *2 A to F-frame: Noise filter for signal lines, G, H-frame: Noise filter for signal lines <Motor cable> *3 Only for position control type is not provided with X3 terminal.

*1 D to F-frame: Noise filter for signal lines, G, H-frame: Noise filter for signal lines <Power supply cable> *2 D to F-frame: Noise filter for signal lines, G, H-frame: Noise filter for signal lines <Motor cable> *3 Only for position control type is not provided with X3 terminal.

- Mandatory requirements to conform to EMC directive

- Install the servo driver on the metallic casing (control board).
- Install noise filter and lightning surge absorber in the power supply line.
- Use braided shield cable (tin plated annealed copper wire) for I/O signal cable and encoder cable.
- Provide the noise filter, as shown in the figure, for each cable, I/O line and power source line to be connected to the servo driver.
- Shield of cables not shown on the figure should be directly grounded through PE.

Because these conditions for EMC directive are affected by status of connected devices, wiring, connection and location, compliance should be checked after completing installation.

- Details of cable (left-hand figure)

Symbol	From	To	Cable function	Length	Remarks	Shield	Noise filter for signal lines
(1)	Breaker	Noise filter	Power line	$2 m$	Single phase or 3-phase	none	none
(2)	Noise filter	Servo driver	Power line	$2 m$	-	none	with
(3)	Servo driver	Servo motor	Junction cable for motor	20 m	-	*1	with
(4)	Servo driver	Servo motor	Junction cable for encoder	20 m	-	with	with
(5)	Switch box	Servo driver	I/O cable	3 m	-	with	with
(6)	Frame ground	Noise filter	FG line	1 m	-	none	none
(7)	Frame ground	Noise filter	FG line	1 m	-	none	none
(8)	AC power supply	Switch box	Power line	1 m	-	none	none

*1 Frame A to F: none, Frame G and H: with.

- Refer to P.2-6 for a left-hand figure and the list of the Peripheral Equipments after .

Caution \cdots. Use options correctly after reading Operating Instructions of the options to better understand the precautions.
Take care not to apply excessive stress to each optional part.

1. Conformance to international standards
 Composition of Peripheral Equipments

Power Supply

100V type : (A to C-frame)	Single phase, 100V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	to	120 V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	50/60Hz
200V type : Single (A to D-frame)	ingle/3-phase, 200V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	to	240 V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	50/60Hz
200V type : (E to H -frame)	3-phase, 200V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	to	230 V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	50/60Hz
400V type : Main power supply (D to H-frame)	3 -phase, 380 V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	to	480V	$\begin{aligned} & +10 \% \\ & -15 \% \end{aligned}$	50/60Hz

(1) This product is designed to be used in over-voltage category (installation category) III of EN 61800-5-1:2007.
(2) Use an insulated power supply of DC12 to 24 V which has CE marking or complies with EN60950.

Remarks \cdots - Use sheathed (jacketed) cable, twisted cable or closely bundled cable for power cable.

- Power cable and signal wires must be sufficiently isolated from each other.

Circuit Breaker

Install a circuit breaker which complies with IEC Standards and UL recognized (Listed and (4L) marked) between power supply and noise filter.
The short-circuit protection circuit on the product is not for protection of branch circuit. The branch circuit should be protected in accordance with NEC and the applicable local regulations in your area.

Noise Filter

Option part No.	Voltage specifications for driver	Manufacturer's part No.	Applicable driver (frame)	Manufacturer
DVOP4170	Single phase 100V/200V	SUP-EK5-ER-6	A, B-frame	Okaya Electric Ind.
DV0PM20042	3 -phase 200V	3SUP-HU10-ER-6	A, B-frame	
	Single phase $100 \mathrm{~V} / 200 \mathrm{~V}$ 3-phase 200V		C-frame	
DVOP4220	Single/ 3-phase 200V	3SUP-HU30-ER-6	D-frame	
DV0PM20043	3 -phase 200V	3SUP-HU50-ER-6	E-frame	
DVOP3410	3 -phase 200V	3SUP-HL50-ER-6B	F-frame	

- Recommended components

Model No.	Voltage specifications for driver	Rated current	Applicable driver (frame)	Manufacturer
RTHN-5010	3 -phase 200V	10	A, B, C-frame	TDK-Lambda Corp.
RTHN-5030		30	D-frame	
RTHN-5050		50	E, F-frame	
FS5559-60-34		60	G-frame	Schaffner
FS5559-80-34		80	H-frame	
FN258L-16-07	3 -phase 400V	16	D, E-frame	
FN258L-30-07		30	F-frame	
FN258-42-07		42	G, H-frame	
FN258-42-33		42		

Remarks \cdots - Select a noise filter whose capacity is commensurate with the power source capacity (in consideration of the load condition).

- For the detailed specifications of each noise filter, contact the manufacturer.
-When two or more servo drivers are used with a single noise filter at the common power source, consult with the noise filter manufacturer.
- Do not run the input and output wiring on the same passage: noise resistance will drop. (Figure at lower right)
- Isolate the input and output line from each other. (Figure at lower left)

The effect of the noise filter is a little.

Do not place the input and output lines in the same duct or do not tie both in a bundle.

Surge Absorber

Option part No.	Voltage specifications for driver	Manufacturer's part No.	Manufacturer
DV0P1450	3-phase 200V	$\mathrm{R} \cdot \mathrm{A} \cdot \mathrm{V}-781 \mathrm{BXZ}-4$	
DV0P4190	Single phase $100 \mathrm{~V} / 200 \mathrm{~V}$	$\mathrm{R} \cdot \mathrm{A} \cdot \mathrm{V}-781 \mathrm{BWZ}-4$	
DV0PM20050	3-phase 400V	$\mathrm{R} \cdot \mathrm{A} \cdot \mathrm{V}-801 \mathrm{BXZ}-4$	

Remarks \cdots ? When performing withstand voltage test of machine and equipment, be sure to remove the surge absorber; otherwise, it will be damaged.

Noise Filter for Signal Lines

Signal line, Encoder line, Control power line, Power line (A to D-frame: 100V/ 200V and D to F-frame: 400 V) and Motor line (A to F-frame).

Option part No.	Manufacturer's part No.	Manufacturer
DVOP1460	ZCAT3035-1330	TDK Corp.

- Recommended components

Option part No.	Manufacturer's part No.	Applicable driver (frame)	Manufacturer
Power cable	RJ8035	E-frame 200 V, F-frame 200 V	
	RJ8095	G, H-frame	
Motor cable	T400-61D	G, H-frame	MICROMETALS

<Attaching signal noise filter>

Signal wire	Wind cables the number of turns required to form the signal noise filter. If sheathed (jacketed): remove the sheath (jacket) to the length so that wires (L1, L2,
L3) can be wound on the signal noise filter (including power line dedicated filter). For	
effective noise reduction capability, L1, L2 and L3 should be wound together.	
If not effective, increase the number of signal noise filters (including power line	
dedicated filters). (See figure below.)	

Residual current device

Install a type B Residual current device (RCD) at primary side of the power supply.

Grounding

(1) To prevent electric shock, be sure to connect the ground terminal (\oplus) of the driver, and the ground terminal (PE) of the control panel.
(2) The ground terminal (Θ) must not be shared with other equipment. Two ground terminals are provided.

Structure of control board

If there is a gap at cable inlet/outlet, mounting hole of operation panel or a door, radio waves will penetrate into or radiate out through the gap. To prevent unfavorable conditions due to radio frequency activities, observe the following control board design and selection instruction.
-The control board should be made of metal which provides electrical continuity.

- The control board should not have electrically-isolated conductor.
- All units installed in the casing should be grounded to the case.

Increasing noise resistance of control I/O signal

When noise is applied to the control input/output, it causes displacement and malfunctioning of I/O signal.

- X1 to X7 are secondary side circuit which should be isolated from the primary power source (24 VDC control power source, 24 VDC braking power source and 24 VDC for regenerative resistor). Do not connect the secondary side circuit to the primary power source and ground wire. Otherwise, I/O signal will cause error operation.
- Control power source (particularly 24 VDC) should be completely isolated from external operating power source. Never connect the ground of the control power source to that of external power source.
- The signal line should have shield, the both end of which should be connected to the ground.

Note \cdots For driver and applicable peripheral equipments, refer to P.2-10 "Driver and List of Applicable Peripheral Equipments".
Caution … Use options correctly after reading Operating Instructions of the options to better understand the precautions.
Take care not to apply excessive stress to each optional part.

2. System Configuration and Wiring

Preparation
Driver and List of Applicable Peripheral Equipments

*1 Select peripheral equipments for single/3phase common specification according to the power source.
*2 For the external dynamic brake resistor, use the magnetic contactor with the same rating as that for the main circuit.
*3 When use the external regenerative resistor of the option (DVOPM20058, DV0PM20059), use the cable with the same diameter as the main circuit cable.
*4 The diameter of the ground cable and the external dynamic brake resistor cable must be equal to, or larger than that of the motor cable. The motor cable is a shield cable, which conforms to the EC Directives and UL Standards. (G, H-frame only)
*5 Use thses products to suit an international standard.

- About circuit breaker and magnetic contactor

To comply to EC Directives, install a circuit breaker between the power and the noise filter without fail, and the circuit breaker should conform to IEC Standards and UL recognized (Listed and (1L) marked).
Suitable for use on a circuit capable of delivering not more than 5,000Arms symmetrical amperes, below the maximum input voltage of the product.
Remarks $\cdots \%$ Select a circuit breaker and noise filter which match to the capacity of power supply (including a load condition).

- Terminal block and protective ground terminals

- Use a copper conductor cables with temperature rating of $75^{\circ} \mathrm{C}$ or higher.
- Use the attached exclusive connector for A to E-frame, and maintain the peeled off length of 8 to 9mm. (Refer to P.2-50)
- Fastening torque list (Terminal block screw/Terminal cover fastening screw)

	Driver	Termi	nal block screw	Termi	al cover fastening screw
Frame	Terminal name	Nominal size	Fastening torque ($\mathrm{N} \cdot \mathrm{m}$) ${ }^{* 1}$	Nominal size	Fastening torque $(\mathrm{N} \cdot \mathrm{m})^{* 1}$
F200V	L1, L2, L3, L1C, L2C, B1, B2, B3, NC, U, V, W	M5	1.0 to 1.7	M3	0.19 to 0.21
F400V	24V, 0V	M3	0.4 to 0.6		
	L1, L2, L3, B1, B2, B3, NC, U, V, W	M4	0.7 to 1.0		
G	L1C, L2C, 24V, 0V, DB1, DB2, DB3, DB4, NC	M5	1.0 to 1.7		
	L1, L2, L3, B1, B2, NC, U, V, W	M5	2.0 to 2.4	M3	0.3 to 0.5
H	L1C, L2C, 24V, 0V, DB1, DB2	M4	0.7 to 1.0	M5	2.0 to 2.5
	L1, L2, L3, B1, B2, NC, U, V, W	M6	2.2 to 2.5		

- Fastening torque list (Ground terminal screw/Connector to host controller (X4))

Driver frame	Terminal block screw		Connector to host controller (X4)	
	Nominal size	Fastening torque ($\mathrm{N} \cdot \mathrm{m}$) ${ }^{* 1}$	$\begin{gathered} \text { Nominal } \\ \text { size } \end{gathered}$	Fastening torque $(\mathrm{N} \cdot \mathrm{m})^{\cdot 1}$
A to E	M4	0.7 to 0.8	M2.6	0.3 to 0.35
F, G	M5	1.4 to 1.6		
H	M6	2.4 to 2.6		

*1 - Applying fastening torque larger than the maximum value may result in damage to the product.

- Do not turn on power without tightening all terminal block screws properly.
- Do not turn on power without tightening all terminal block screws properly, otherwise, loose contacts may generate heat (smoking, firing).
- To check for looseness, conduct periodic inspection of fastening torque once a year.

Be sure to conduct wiring properly and securely. Insecure or improper wiring may cause the motor running out of control or being damaged from overheating. In addition, pay attention not to allow conductive materials, such as wire chips, entering the driver during the installation and wiring.

Connecting Example of A to D-frame

- Apply the voltage designated on the nameplate from the power source.
Symmetric current should be 5000 Arms or below. If the short-circuit current on the power source exceeds this value, use a current-limiting device (e.g. current-limiting fuse, current-limiting circuit breaker or transformer).
- Wiring of Main Connector (XA) Circuit Breaker (MCCB)

```
meplate
```

To protect power supply line from overloading, install a wiring circuit breaker rated to the capacity of the power supply. Noise Filter (NF)
Removes external noise from the power lines. And reduces an effect of the noise generated by the servo driver.

Magnetic Contactor (MC)

 Turns on/off the main power of the servo driver.Use coil surge suppression units together with this.

- Never start nor stop the servo motor with this Magnetic Contactor.
Reactor (L) (to be supplied by customer) Reduces harmonic current of the main power.

- Wiring of Motor Connector (XB)

Pin B1 (6-pin), B2 (4-pin), and B3 (5-pin)

- B2 and B3 to be kept shorted for normal operation (For C-frame and D-frame).
- When you connect an external regenerative resistor, disconnect a short circuit wire between B2 and B3 (For C-frame and D-frame), then connect the external regenerative resistor between B1 and B2, set up Pr0. 16 to 1 or 2.

Note

Note that no regenerative resistor is equipped in Frame A and B type.

Wiring to Connector, XA $\cdots \stackrel{\%}{ }$ P.2-14

- Connection to input power

L1 (Pin-5)
L2 (Pin-4)
L3 (Pin-3)
L1C (Pin-2)
L2C (Pin-1)

Wiring to Connector, XB ...!. P.2-14

- Connection to external components

Regenerative resistor (optional)
Remarks … - When you use an external regenerative resistor, install an external protective apparatus, such as thermal fuse without fail.

- Thermal fuse and thermostat are built in to the regenerative resistor (Option). If the thermal fuse is activated, it will not resume.
- Mount the regenerative resistor on incombustible material such as metal.

Note

This overall wiring diagram is a typical one. The pages that follow show wiring for specific application. The wiring indicated with the broken line shall be provided only when required.
Related page ...i: - P.7-94... "Options"
\square High voltage
Handle lever Use this for connector connection. Store this after connection for other occasions. (Refer to P.2-50 for connection.)

Wiring to Connector, X7 … P.2-60

- Monitor output

Setup support software "PANATERM" Please download from our web site.

* These colors are used for optional cable.

Wiring to Connector, X1 ..? P.2-51

- Connection to PC (PANATERM)

Wiring to Connector, X2 ...? P.2-51

- Connection to RS232, RS485 or host controller

Wiring to Connector, X3 $\cdots \div$ P.2-53

- Connection to Safety by-pass plug

Wiring to Connector, X4 ‥? P.2-54

- Connection to host controller

Wiring to Connector, X5 $\cdots \div$ P.2-55

- Connection to feedback scale

Wiring to Connector, X6 … P.2-57

- Connection to encoder

Remarks ‥\%

- X1 to X7 are used for the secondary circuit. To connect these terminals to the primary power supply (particularly, 24 VDC power supply for brake), insulation is required.
Do not connect these terminals to
and ground
Junction cable for motor
Wiring to Connector, XB \cdots ? P.2-14
- Connection to motor driving phase
the same power supply.

Junction cable
Junction
for brake

for brake DC24V
(to be supplied by customer) V
*1 Do not make displacement, wiring or inspection while the LED is lit - cause of electric shock.
Note The figure above shows connections on velocity, position, torque and full-closed mode driver.

- Only for position control type is not provided with $\mathrm{X} 2, \mathrm{X} 3$ and X 5 .
Related page …: • P.2-14 "Wiring of the Main Circuit (A to G-frame, 100/200 V type)" • P.2-48 "Specifications of Motor connector" URL: http://industrial.panasonic.com/jp/i/fa_motor.html

2. System Configuration and Wiring
 Wiring of the Main Circuit (A to D-frame, 100/200 V type)

A to D-frame, 100 V / 200 V type

- Wiring should be performed by a specialist or an authorized personnel.
- Do not turn on the power until the wiring is completed.
- Never touch the power connector (XA and XB) to which high voltage is applied. There is a risk of electric shock.
- Tips on Wiring

1) Wire connector ($X A$ and $X B$).
2) Connect the wired connector to the driver.

Fully insert the connector to the bottom until it clicks.

[^6]
2. System Configuration and Wiring Wiring Diagram (A to D-frame, 100/200 V type)

Compose the circuit so that the main circuit power will be shut off when an error occurs.

In Case of Single Phase, A to D-frame, 100 V / 200 V type

Power supply Single phase, $100 \mathrm{~V}-15 \%$ to $120 \mathrm{~V}+10 \%$ Single phase, $200 \mathrm{~V}-15 \%$ to $240 \mathrm{~V}+10 \%$

Remarks …s

When you use single phase, connect the main power between L1 and L3 terminals.

Built-in thermostat of an external regenerative resistor (light yellow)

In Case of 3-Phase, A to D-frame, 200 V type

Note The wiring indicated with the broken line shall be provided only when required.
Related page ...: • P.2-48 "Specifications of Motor connector" • P.2-50 "Wiring method to connector"

Connecting Example of E-frame

- Apply the voltage designated on the nameplate from the power source.
Symmetric current should be 5000 Arms or below. If the short-circuit current on the power source exceeds this value, use a current-limiting device (e.g. currentlimiting fuse, current-limiting circuit breaker or transformer).
- Wiring of Main Connector (XA) Circuit Breaker (MCCB)
To protect power supply line from overloading, install a wiring circuit breaker rated to the capacity of the power supply.

Noise Filter (NF)

Removes external noise from the power lines. And reduces an effect of the noise generated by the servo driver.
Magnetic Contactor (MC)
Turns on/off the main power of the servo driver.
Use coil surge suppression units together with this.

- Never start nor stop the servo motor with this Magnetic Contactor.
Reactor (L) (to be supplied by customer) Reduces harmonic current of the main power.

- Wiring of Motor Connector (XC)

Pin B1 (4-pin), B2 (2-pin), and B3 3-pin)

- B2 and B3 to be kept shorted for normal operation.
- When you connect an external regenerative resistor, disconnect a short circuit wire between B2 and B3, then connect the external regenerative resistor between B1 and B2, set up Pr0.16 to 1 or 2.
meplate
exceeds
urrent-

Handle lever Use this for connector connection. Store this after connection for other occasions.

Wiring to Connector, X7 ... \div P.2-60

- Monitor output (Refer to P.2-50 for connection.)

Short circuit wire(B2-B3)

Wiring to Connector, XB … P. P-18

- Connection to motor

U-phase(red) V-phase(white) W-phase(black)

* These colors are used for optional cable.

(to be supplied by customer)

Setup support software "PANATERM" Please download from our web site.
*1 Do not make displacement, wiring or inspection while the LED is lit - cause of electric shock.

[^7]
2. System Configuration and Wiring
 Wiring of the Main Circuit (E-frame, 200 V type)

E-frame, 200 V type

- Wiring should be performed by a specialist or an authorized personnel.
- Do not turn on the power until the wiring is completed.
- Never touch the power connector (XA, XB and XC) to which high voltage is applied. There is a risk of electric shock.
- Tips on Wiring

1) Wire connector ($X A, X B$ and $X C$).
2) Connect the wired connector to the driver.

Fully insert the connector to the bottom until it clicks.

[^8]
2. System Configuration and Wiring Wiring Diagram (E-frame, 200 V type)

Compose the circuit so that the main circuit power will be shut off when an error occurs.

In Case of 3-Phase, E-frame, 200 V type

Power supply 3 -phase, $200 \mathrm{~V}-15 \%$ to $230 \mathrm{~V}+10 \%$

Note \cdots The wiring indicated with the broken line shall be provided only when required.
Related page $\cdots \cdot:$: P.2-48 "Specifications of Motor connector" • P.2-50 "Wiring method to connector"

Connecting Example of F-frame

- Apply the voltage designated on the nameplate from the power source.
Symmetric current should be 5000 Arms or below. If the short-circuit current on the power source exceeds this value, use a current-limiting device (e.g. current-limiting fuse, current-limiting circuit breaker or transformer).

- Wiring of Main Circuit

 Circuit Breaker (MCCB)

Connection with input power supply

To protect power supply line from overloading, install a wiring circuit breaker rated to the capacity of the power supply.

Noise Filter (NF)

Removes external noise from the power lines. And reduces an effect of the noise generated by the servo driver.
Magnetic Contactor (MC)
Turns on/off the main power of the servo driver.
Use coil surge suppression units together with this.

- Never start nor stop the servo motor with this Magnetic Contactor.
Reactor (L) (to be supplied by customer) Reduces harmonic current of the main power.

Pin B1, B2 and B3

- B2 and B3 to be kept shorted for normal operation.
-When you connect an external regenerative resistor, disconnect a short bar between B2 and B3, then connect the external regenerative resistor between B1 and B2, set up Pr0.16 to 1 or 2 .

Pin NC

- Do not connect anything.

Remarks ․? - When you use an external regenerative resistor, install an external protective apparatus, such as thermal fuse without fail.

- Thermal fuse and thermostat are built in to the regenerative resistor (Option). If the thermal fuse is activated, it will not resume.
- Mount the regenerative resistor on incombustible material such as metal.

[^9]
*1 Do not make displacement, wiring or inspection while the LED is lit - cause of electric shock.
Note The figure above shows connections on velocity, position, torque and full-closed mode driver.

- Only for position control type is not provided with X2, X3 and X5.

Related page $\cdot .9$ • P.2-22 "Wiring of the Main Circuit (F-frame, 200 V type)" •P.2-48 "Specifications of Motor connector"
URL: http://industrial.panasonic.com/jp/i/fa_motor.html

F-frame, 200 V type

- Wiring should be performed by a specialist or an authorized personnel.
- Do not turn on the power until the wiring is completed.
- Never touch the terminal to which high voltage is applied. There is a risk of electric shock.
- Tips on Wiring

1) Take off the cover fixing screws, and detach the terminal cover.
2) Make wiring

Use clamp type terminals of round shape with insulation cover for wiring to the terminal block. For cable diameter and size, reter to "Driver and List of Applicable Peripheral Equipments" (P.2-10).
Tighten the terminal block screw with a torque between 1.0 and $1.7 \mathrm{~N} \cdot \mathrm{~m}$.
3) Attach the terminal cover, and fix with screws.

Tighten the screw securing the cover with a torque written on P.2-11.

[^10]
2. System Configuration and Wiring
 Wiring Diagram (F-frame, 200 V type)

Compose the circuit so that the main circuit power will be shut off when an error occurs.

In Case of 3-Phase, F-frame, 200 V type

Power supply 3 -phase, $200 \mathrm{~V}-15 \%$ to $230 \mathrm{~V}+10 \%$

Connecting Example of G-frame

- Apply the voltage designated on the nameplate from the power source.
Symmetric current should be 5000 Arms or below. If the short-circuit current on the power source exceeds this value, use a current-limiting device (e.g. current-limiting fuse, current-limiting circuit breaker or transformer).
- Wiring of Main Circuit

Circuit Breaker (MCCB)

 Connection with input power supply

To protect power supply line from overloading, install a wiring circuit breaker rated to the capacity of the power supply.

Noise Filter (NF)

Removes external noise from the power lines. And reduces an effect of the noise generated by the servo driver.

Magnetic Contactor (MC)

Turns on/off the main power of the servo driver.
Use coil surge suppression units together with this.

- Never start nor stop the servo motor with this Magnetic Contactor.
Reactor (L) (to be supplied by customer)
Reduces harmonic current of the main power.

Regenerative resistor (optional)

Remarks \cdots

- When you use an external regenerative resistor, install an external protective apparatus, such as thermal fuse without fail.
- Thermal fuse and thermostat are built in to the regenerative resistor (Option). If the thermal fuse is activated, it will not resume.
- Mount the regenerative resistor on incombustible material such as metal.

Note

The wiring indicated with the broken line shall be provided only when required.

Pin B1 and B2

- When you connect an external regenerative resistor, connect the external regenerative resistor between B1 and B2, set up Pr0.16 to 1 or 2.

Pin DB1, DB2, DB3 and DB4

- Normally, leave DB3 and DB4 short-circuited.
- To connect the external dynamic brake resistor, refer to "Dynamic Brake" on P.2-67 Do not use the external dynamic brake resistor together with the built-in resistor.

Pin NC

- Do not connect anything.

[^11]

G-frame, 200 V type

- Wiring should be performed by a specialist or an authorized personnel.
- Do not turn on the power until the wiring is completed.
- Never touch the terminal to which high voltage is applied. There is a risk of electric shock.

- Tips on Wiring

1) Take off the cover fixing screws, and detach the terminal cover.
2) Make wiring

Use clamp type terminals of round shape with insulation cover for wiring to the terminal block. For cable diameter and size, reter to "Driver and List of Applicable Peripheral Equipments" (P.2-11).
Tighten the terminal block screw with a torque between 2.0 and $2.4 \mathrm{~N} \cdot \mathrm{~m}$ (left side) and 1.0 and $1.7 \mathrm{~N} \cdot \mathrm{~m}$ (right side).
3)Attach the terminal cover, and fix with screws.

Tighten the screw securing the cover with the torque written on P.2-11.

[^12]Compose the circuit so that the main circuit power will be shut off when an error occurs.

In Case of 3-Phase, G-frame, 200 V type

Power supply 3 -phase, $200 \mathrm{~V}-15 \%$ to $230 \mathrm{~V}+10 \%$

Note 1)
Normally, do not disconnect the shorting bar.

Connecting Example of H-frame

> - Apply the voltage designated on the nameplate from the power source.
> Symmetric current should be 5000 Arms or below. If the short-circuit current on the power source exceeds this value, use a current-limiting device (e.g. current-limiting fuse, current-limiting circuit breaker or transformer).

- Wiring of Main Circuit Circuit Breaker (MCCB)
To protect power supply line from overloading, install a wiring circuit breaker rated to the capacity of the power supply.

Noise Filter (NF)

Removes external noise from the power lines. And reduces an effect of the noise generated by the servo driver.
Magnetic Contactor (MC)
Turns on/off the main power of the servo driver. Use coil surge suppression units together with this.

- Never start nor stop the servo motor with this Magnetic Contactor.
Reactor (L) (to be supplied by customer)
Reduces harmonic current of the main power.

24 VDC

power supply for regenerative resistor (to be supplied by)

Connection to external

Regenerative resistor $\stackrel{\perp}{=}$ (optional)
Remarks...:

- When you use an external regenerative resistor, install an external protective apparatus, such as thermal fuse without fail.
- Thermal fuse and thermostat are built in to the regenerative resistor (Option). If the thermal fuse is activated, it will not resume.
- Mount the regenerative resistor on incombustible material such as metal.
- For wiring of the circuit, refer to "Wiring Diagram" on P.2-31.

Charge lamp (LED) Do not make displacement, wiring or inspection while the LED is lit - cause of electric shock.

H-frame, 200 V type

- Wiring should be performed by a specialist or an authorized personnel.
- Do not turn on the power until the wiring is completed.
- Never touch the terminal to which high voltage is applied. There is a risk of electric shock.

- Tips on Wiring

1) Take off the cover fixing screws, and detach the terminal cover.
2)Make wiring

Use clamp type terminals of round shape with insulation cover for wiring to the terminal block. For cable diameter and size, reter to "Driver and List of Applicable Peripheral Equipments" (P.2-11).
Tighten the terminal block screw with a torque between 0.7 and $0.8 \mathrm{~N} \cdot \mathrm{~m}$ (upper side) and 2.2 and $2.5 \mathrm{~N} \cdot \mathrm{~m}$ (lower side).
3) Attach the terminal cover, and fix with screws.

Tighten the screw securing the cover with the torque written on P.2-11.

[^13]Compose the circuit so that the main circuit power will be shut off when an error occurs.

In Case of 3-Phase, H-frame, 200 V type

Power supply 3 -phase, $200 \mathrm{~V}-15 \%$ to $230 \mathrm{~V}+10 \%$

Note 1)

Magnetic contactor MC2 must be the same rating as the contactor MC1 in the main circuit.

Note 2)

Servo may be turned on in the external sequence if the contact deposits: to protect the system, provide the auxiliary contact.
Note 3)
Use $1.2 \Omega, 400 \mathrm{~W}$ resistor (to be supplied by customer).
Note 4)
To use the external dynamic brake resistor:
Connect the R1 and R2 terminals to B1 and B2.
Connect the T1 and T2 terminals as shown in the left diagram.
Connect the 24 V and 0 V terminals to a 24 VDC power supply.
Connect the E terminal to the ground.
Refer to P.7-122 "Options" for the specifications of the external regenerative resistor.
Note 5)
Provide an external protective device (e.g. thermal fuse) to monitor the temperature of the external dynamic brake resistor.

2. System Configuration and Wiring

Preparation

Connecting Example of D, E-frame

- Apply the voltage designated on the nameplate from the power source.
Symmetric current should be 5000 Arms or below. If the short-circuit current on the power source exceeds this value, use a current-limiting device (e.g. current-limiting fuse, current-limiting circuit breaker or transformer).

- Wiring of Main Connector (XA)

 Circuit Breaker (MCCB)To protect power supply line from overloading, install a wiring circuit breaker rated to the capacity of the power supply.
Noise Filter (NF)
Removes external noise from the power lines. And reduces an effect of the noise generated by the servo driver.

Magnetic Contactor (MC)

Turns on/off the main power of the servo driver.
Use coil surge suppression units together with this.

- Never start nor stop the servo motor with this Magnetic Contactor.
Reactor (L) (to be supplied by customer) Reduces harmonic current of the main power.

- Wiring of Motor Connector (XC)

Pin B1 (4-pin), B2 (2-pin), and B3 (3-pin)

- B2 and B3 to be kept shorted for normal operation.
- When you connect an external regenerative resistor, disconnect a short circuit wire between B2 and B3, then connect the external regenerative resistor between $B 1$ and $B 2$, set up Pro. 16 to 1 or 2.

Wiring to Connector, XC ...! P. P.2-34

- Connection to external components

Regenerative resistor (optional)
Remarks ‥\% • When you use an external regenerative resistor, install an external protective apparatus, such as thermal fuse without fail.

- Thermal fuse and thermostat are built in to the regenerative resistor (Option). If the thermal fuse is activated, it will not resume.
- Mount the regenerative resistor on incombustible material such as metal.

Note

This overall wiring diagram is a typical one. The pages that follow show wiring for specific application. The wiring indicated with the broken line shall be provided only when required.

[^14]
*1 Do not make displacement, wiring or inspection while the LED is lit - cause of electric shock.

Note \ldots	- The figure above shows connections on velocity, position, torque and full-closed mode driver. - Only for position control type is not provided with X2, X3 and X5.
Related page ...?	- P.2-34 "Wiring of the Main Circuit (D, E-frame, 400 V type)" • P.2-48 "Specifications of Motor connector"
	URL: http://industrial.panasonic.com/jp/i/fa motor.html

2. System Configuration and Wiring
 Wiring of the Main Circuit (D, E-frame, 400 V type)

D, E-frame, 400 V type

- Wiring should be performed by a specialist or an authorized personnel.
- Do not turn on the power until the wiring is completed.
- Never touch the power connector (XA, XB, XC and XD) to which high voltage is applied. There is a risk of electric shock.

- Tips on Wiring

1) Wire connector ($X A, X B, X C$ and $X D$).
2) Connect the wired connector to the driver.

Fully insert the connector to the bottom until it clicks.

[^15]Compose the circuit so that the main circuit power will be shut off when an error occurs.

In Case of 3-Phase, D, E-frame, 400 V type

Power supply 3 -phase, $380 \mathrm{~V}-15 \%$ to $480 \mathrm{~V}+10 \%$

Note 1)
Shielding the circuit is recommended for the purpose of noise reduction.

Connecting Example of F-frame

- Apply the voltage designated on the nameplate from the power source.
Symmetric current should be 5000 Arms or below. If the short-circuit current on the power source exceeds this value, use a current-limiting device (e.g. current-limiting fuse, current-limiting circuit breaker or transformer).

- Wiring of Main Circuit Circuit Breaker (MCCB)

 To protect power supply line from overloading, install a wiring circuit breaker rated to the capacity of the power supply.Noise Filter (NF)
Removes external noise from the power lines. And reduces an effect of the noise generated by the servo driver.
Magnetic Contactor (MC)
Turns on/off the main power of the servo driver.
Use coil surge suppression units together with this.

- Never start nor stop the servo motor with this Magnetic Contactor.
Reactor (L) (to be supplied by customer) Reduces harmonic current of the main power.

Pin B1, B2 and B3

- B2 and B3 to be kept shorted for normal operation.
- When you connect an external regenerative resistor, disconnect a short bar between B2 and B3, then connect the external regenerative resistor between B1 and B2, set up Pr0.16 to 1 or 2.

Pin NC

- Do not connect anything.

Connection to external components

Regenerative resistor (optional)
Remarks \cdots

- When you use an external regenerative resistor, install an external protective apparatus, such as thermal fuse without fail.
- Thermal fuse and thermostat are built in to the regenerative resistor (Option). If the thermal fuse is activated, it will not resume.
- Mount the regenerative resistor on incombustible material such as metal.

Note

 This overall wiring diagram is a typical one. The pages that follow show wiring for specific application. The wiring indicated with the broken line shall be provided only when required.[^16]
*1 Do not make displacement, wiring or inspection while the LED is lit - cause of electric shock.
Note The figure above shows connections on velocity, position, torque and full-closed mode driver.

- Only for position control type is not provided with X2, X3 and X5.

Related page $\cdot .9$ - P.2-38 "Wiring of the Main Circuit (F-frame, 400 V type)" •P.2-48 "Specifications of Motor connector" URL: http://industrial.panasonic.com/jp/i/fa_motor.html

F-frame, 400 V type

- Wiring should be performed by a specialist or an authorized personnel.
- Do not turn on the power until the wiring is completed.
- Never touch the terminal to which high voltage is applied. There is a risk of electric shock.

- Tips on Wiring

1) Take off the cover fixing screws, and detach the terminal cover.
2) Make wiring

Use clamp type terminals of round shape with insulation cover for wiring to the terminal block. For cable diameter and size, reter to "Driver and List of Applicable Peripheral Equipments" (P.2-10).
Tighten the terminal block screw with a torque written on P.2-11.
3) Attach the terminal cover, and fix with screws.

Tighten the screw securing the cover with a torque written on P.2-11.

[^17]
2. System Configuration and Wiring
 Wiring Diagram (F-frame, 400 V type)

Compose the circuit so that the main circuit power will be shut off when an error occurs.
In Case of 3-Phase, F-frame, 400 V type
Power supply 3 -phase, $380 \mathrm{~V}-15 \%$ to $480 \mathrm{~V}+10 \%$

Note 1)

Shielding the circuit is recommended for the purpose of noise reduction.

Note \cdots The wiring indicated with the broken line shall be provided only when required.
Related page $\cdots \cdots:$ P. 2-48 "Specifications of Motor connector"

Connecting Example of G-irame

- Apply the voltage designated on the nameplate from the power source.
Symmetric current should be 5000 Arms or below. If the short-circuit current on the power source exceeds this value, use a current-limiting device (e.g. current-limiting fuse, current-limiting circuit breaker or transformer).

- Wiring of Main Circuit Circuit Breaker (MCCB)

To protect power supply line from overloading, install a wiring circuit breaker rated to the capacity of the power supply.

Noise Filter (NF)

Removes external noise from the power lines. And reduces an effect of the noise generated by the servo driver.

Magnetic Contactor (MC)

Turns on/off the main power of the servo driver.
Use coil surge suppression units together with this.

- Never start nor stop the servo motor with this Magnetic Contactor.
Reactor (L) (to be supplied by customer)
Reduces harmonic current of the main power.

24 VDC power supply for control (to be supplied by customer)

24 V
OV

L1
L2
L3

Connection to external components ...?.P.2-42 B1

B2

Regenerative resistor (optional)

Remarks \cdots

- When you use an external regenerative resistor, install an external protective apparatus, such as thermal fuse without fail.
- Thermal fuse and thermostat are built in to the regenerative resistor (Option). If the thermal fuse is activated, it will not resume.
- Mount the regenerative resistor on incombustible material such as metal.

Note ...:

The wiring indicated with the broken line shall be provided only when required.

Pin B1 and B2

- When you connect an external regenerative resistor, connect the external regenerative resistor between B1 and B2, set up Pr0.16 to 1 or 2.

Pin DB1, DB2, DB3 and DB4

- Normally, leave DB3 and DB4 short-circuited.
- To connect the external dynamic brake resistor, refer to "Dynamic Brake" on P.2-67.
Do not use the external dynamic brake resistor together with the built-in resistor.
Pin NC
- Do not connect anything.

[^18]

G-frame, 400 V type

- Wiring should be performed by a specialist or an authorized personnel.
- Do not turn on the power until the wiring is completed.
- Never touch the terminal to which high voltage is applied. There is a risk of electric shock.

- Tips on Wiring

1) Take off the cover fixing screws, and detach the terminal cover.
2) Make wiring

Use clamp type terminals of round shape with insulation cover for wiring to the terminal block. For cable diameter and size, reter to "Driver and List of Applicable Peripheral Equipments" (P.2-11).
Tighten the terminal block screw with a torque between 2.0 and $2.4 \mathrm{~N} \cdot \mathrm{~m}$ (left side) and 1.0 and $1.7 \mathrm{~N} \cdot \mathrm{~m}$ (right side).
3) Attach the terminal cover, and fix with screws.

Tighten the screw securing the cover with the torque written on P.2-11.

[^19]
2．System Configuration and Wiring
 Wiring Diagram（G－frame， 400 V type）

Compose the circuit so that the main circuit power will be shut off when an error occurs．

In Case of 3－Phase，G－frame， 400 V type

Power supply 3 －phase， $380 \mathrm{~V}-15 \%$ to $480 \mathrm{~V}+10 \%$

Note 1）
Shielding the circuit is recommended for the purpose of noise reduction．
Note 2）
Normally，do not disconnect the shorting bar．

Note \cdots The wiring indicated with the broken line shall be provided only when required．
Related page ．．．：－P．2－48＂Specifications of Motor connector＂

Connecting Example of H-frame

- Apply the voltage designated on the nameplate from the power source.
Symmetric current should be 5000 Arms or below. If the short-circuit current on the power source exceeds this value, use a current-limiting device (e.g. current-limiting fuse, current-limiting circuit breaker or transformer).

- Wiring of Main Circuit

Circuit Breaker (MCCB)
To protect power supply line from overloading, install a wiring circuit breaker rated to the capacity of the power supply.
Noise Filter (NF)
Removes external noise from the power lines. And reduces an effect of the noise generated by the servo driver.

Magnetic Contactor (MC)

Turns on/off the main power of the servo driver. Use coil surge suppression units together with this.

- Never start nor stop the servo motor with this Magnetic Contactor.
Reactor (L) (to be supplied by customer) Reduces harmonic current of the main power.

(optional)

Remarks \cdots;

- When you use an external regenerative resistor, install an external protective apparatus, such as thermal fuse without fail.
- Thermal fuse and thermostat are built in to the regenerative resistor (Option). If the thermal fuse is activated, it will not resume.
- Mount the regenerative resistor on incombustible material such as metal.
- For wiring of the circuit, refer to "Wiring Diagram" on P.2-47.

Remarks ...s

- When you use an external dynamic brake resistor, install an external protective apparatus, such as thermal fuse without fail.
- Mount the dynamic brake resistor on incombustible material such as metal.
- For wiring of the circuit, refer to "Wiring Diagram" on P.2-47.
- For an example of the recommended protective circuit, refer to "Dynamic Brake" on P.2-67.

Note

This overall wiring diagram is a typical one. The pages that follow show wiring for specific application. The wiring indicated with the broken line shall be provided only when required.
Related page....? • P.7-94... "Options"
------- : High voltage
Wiring to Connector, X7 ...! P.2-60

- Monitor output
 from our web site.
PC (to be supplied by customer) Setup support software "PANATERM" Please download

Wiring to Connector, X1 $\cdots \div \cdot \mathrm{P} .2-51$

- Connection to PC (PANATERM)

Wiring to Connector, X2 ...: P.2-51

- Connection to RS232, RS485 or host controller

Wiring to Connector, X3 ...: P. P-53

- Connection to Safety by-pass plug

Wiring to Connector, X4 $\cdots \cdot \div \cdot \mathrm{P} .2-54$

- Connection to host controller
[可 (或 Wiring to Connector, X5 ...? P.2-55
- Connection to feedback scale

Wiring to Connector, X6 ...? P.2-57

- Connection to encoder

Remarks ...;

- X1 to X7 are used for the secondary circuit. To connect these terminals to the primary power supply (particularly, the 24 VDC power supply for control, the 24 VDC power supply for brake, and the 24 VDC power supply for regenerative resistor), insulation is required.
Do not connect these terminals to the same power supply.

Pin B1and B2

- When you connect an external regenerative resistor, connect the external regenerative resistor between B1 and B2, set up Pr0.16 to 1 or 2.

Pin DB1 and DB2

- When installing an external dynamic brake resistor, connect the magnetic contactor (for controlling) for external dynamic brake to between LIC and DB1.
Remarks ..?
- The voltage applied across DB1 and DB2 must be 300 VAC or below or 100 VDC or below.

Note

- L1C is connected after the R-phase of the noise filter.
- L1C is not indicated on the driver body.

Pin NC

- Do not connect anything.

Connection to motor driving phase and ground

H-frame, 400 V type

- Wiring should be performed by a specialist or an authorized personnel.
- Do not turn on the power until the wiring is completed.
- Never touch the terminal to which high voltage is applied. There is a risk of electric shock.

- Tips on Wiring

1) Take off the cover fixing screws, and detach the terminal cover.
2)Make wiring

Use clamp type terminals of round shape with insulation cover for wiring to the terminal block. For cable diameter and size, reter to "Driver and List of Applicable Peripheral Equipments" (P.2-11).
Tighten the terminal block screw with a torque between 0.7 and $1.0 \mathrm{~N} \cdot \mathrm{~m}$ (upper side) and 2.2 and $2.5 \mathrm{~N} \cdot \mathrm{~m}$ (lower side).
3) Attach the terminal cover, and fix with screws.

Tighten the screw securing the cover with the torque written on P.2-11.

[^20]
2
 Preparation

 2. System Configuration and Wiring

 2. System Configuration and Wiring Wiring Diagram (H-frame, 400 V type)

 Wiring Diagram (H-frame, 400 V type)}

Compose the circuit so that the main circuit power will be shut off when an error occurs.

In Case of 3-Phase, H-frame, 400 V type

Power supply 3 -phase, $380 \mathrm{~V}-15 \%$ to $480 \mathrm{~V}+10 \%$

Note 1)
Shielding the circuit is recommended for the purpose of noise reduction.

Note 2)

Magnetic contactor MC2 must be the same rating as the contactor MC1 in the main circuit.
Note 3)
Servo may be turned on in the external sequence if the contact deposits: to protect the system, provide the auxiliary contact.
Note 4)
Use 4.8Ω, 400 W resistor (to be supplied by customer).
Note 5)
To use the external dynamic brake resistor:
Connect the R1 and R2 terminals to B1 and B2.
Connect the T1 and T2 terminals as shown in the left diagram.
Connect the 24 V and 0 V terminals to a 24 VDC power supply.
Connect the E terminal to the ground.
Refer to P.7-122 "Options" for the specifications of the external regenerative resistor.
Note 6)
Provide an external protective device (e.g. thermal fuse) to monitor the temperature of the external dynamic brake resistor.

Note \cdots The wiring indicated with the broken line shall be provided only when required.
Related page ...: - P.2-48 "Specifications of Motor connector"

- When the motors of <MSMD, MHMD> are used, they are connected as shown below.

Connector: Made by Tyco Electronics k.k, (The figures below show connectors for the motor.)

172168-1 20-bit Incremental

PIN No.	Application
1	NC
2	PS
3	$\overline{\text { PS }}$
4	E5V
5	E0V
6	FG(SHIELD)

<Connector for motor>

172167-1

PIN No.	Application
1	U-phase
2	V-phase
3	W-phase
4	Ground

<Connector for brake>

172165-1

| PIN No. | |
| :---: | :---: | Application \mid Brake $|$| 1 |
| :---: |

- When the motors of <MSME (50 W to 750 W)> are used, they are connected as shown below. Connector: Made by Japan Aviation Electronics Industry, Ltd. (The figures below show connectors for the motor.)
* Do not remove the gasket supplied with the junction cable connector. Securely install the gasket in place. Otherwise, the degree of protection of IP67 will not be guaranteed.

		20-bit Incremental		17-bit Absolute	
		PIN No.	Application	PIN No.	Application
Connector for encoder	$\frac{1}{2} \quad \frac{5}{6}$	1	FG(SHIELD)	1	FG(SHIELD)
		2	-	2	BAT-
		3	EOV	3	EOV
$4 \square^{+}$		4	$\overline{\text { PS }}$	4	$\overline{\text { PS }}$
	JN6CR07PM2	5	-	5	BAT+
		6	E5V	6	E5V
		7	PS	7	PS

Tightening torque of the screw (M2) 0.19 to $0.21 \mathrm{~N} \cdot \mathrm{~m}$

* Be sure to use only the screw supplied with the connector, to avoid damage.

PIN No.	
1	Application
2	U-phase
3	V-phase
PE	Ground

Tightening torque of the screw (M2) 0.085 to $0.095 \mathrm{~N} \cdot \mathrm{~m}$ (screwed to plastic)
*Be sure to use only the screw supplied with the connector, to avoid damage.
[Motor with brake]

JN4AT02PJM-R

Tightening torque of the screw (M2) 0.19 to $0.21 \mathrm{~N} \cdot \mathrm{~m}$

* Be sure to use only the screw supplied with the connector, to avoid damage.
- When the motors of <MSME (750 W (400V), 1.0 kW to 5.0 kW), MDME, MFME, MGME, MHME> are used, they are connected as shown below.
Connector: Made by Japan Aviation Electronics Industry, Ltd. (The figures below show connectors for the motor.)
- Connector for encoder
<IP65 Encoder connector for motor>
<IP67 Encoder connector for motor>

IP65 motor
Connector for encoder
(Large type)

IP67 motor
Connector for encoder (Small type)

20-bit Incremental

20-bit Incremental		17-bit Absolute	
PIN No.	Application	PIN No.	Application
1	EOV	1	EOV
2	NC	2	NC
3	PS	3	PS
4	E5V	4	E5V
5	NC	5	BAT-
6	NC	6	BAT+
7	$\overline{\text { PS }}$	7	$\overline{\text { PS }}$
8	NC	8	NC
9	FG(SHIELD)	9	FG(SHIELD)
10	NC	10	NC

- Connector for motor/brake

Table of Connector for motor and Connector for brake

Motor model	Motor capacity	200V		400V	
		with Brake without Brake	with Brake without Brake		
MSME	750 W	-	-	D	A
	1.0 kW to 2.0 kW	C	A	D	A
	3.0 kW to 5.0 kW	D	B	D	B
MDME	$400 \mathrm{~W}, 600 \mathrm{~W}$	-	-	D	A
	1.0 kW to 2.0 kW	C	A	D	A
	3.0 kW to 5.0 kW	D	B	D	B
	7.5 kW to 15.0 kW	E, F	E	E, F	E

Motor model	Motor capacity	200V		400V	
		with Brake	without Brake	with Brake	without Brake
MFME	1.5 W	C	C	D	D
	$2.5 \mathrm{~kW}, 4.5 \mathrm{~kW}$	D	D	D	D
	0.9 kW	C	A	D	A
	2.0 kW to 4.5 kW	D	B	D	B
	6.0 kW	E, F	E	E, F	E
MHME	1.0 kW to 1.5 kW	C	A	D	A
	2.0 kW to 5.0 kW	D	B	D	B
	7.5 kW	E, F	E	E, F	E

\square

JL04V-2E24-11PE-B-R

PIN No.	Application
A	with Brake:Brake
	without Brake:NC
B	with Brake:Brake
	without Brake:NC
C	NC
D	U-phase
E	V-phase
F	W-phase
G	Ground
H	Ground
I	NC

Remarks \cdots Do not connect anything to NC.

Remarks - \%

Do not connect anything to NC.

2. System Configuration and Wiring
 Wiring method to connector

- Follow the procedures below for the wiring connection to the Connector $X A, X B$ and $X C$.

How to connect

1. Peel off the insulation cover of the cable.

- For single wire (Please obey the length in figure.)
- For stranded wires (ferrules must be used as illustrated below).

Example: Ferrules with plastic insulating sleeve

(Al series, Phoenix Contact, Ltd.)

1) Peel off the sheath so that the conductor portion of the cable will protrude from the tip of the ferrule. (It should protrude 1 mm or more from the ferrule.)
2) Insert the cable into the ferrule and crimp it with an appropriate crimping tool.
3) After crimping, cut off the cable conductor portion protruding from the ferrule. (The allowable protruding length after cutting should be 0 to 0.5 mm .)

- Part No. of the crimping tool:

CRIMPFOX U-D66 (1204436)
Available from Phoenix Contact, Ltd.

Examples: Nylon-insulated ferrule

(NTUB series, J.S.T. Mfg. Co., Ltd.)
Vinyl-insulated ferrule
(VTUB series, J.S.T. Mfg. Co., Ltd.)

1) Peel off the sheath of the cable conductor portion to the length equal to that of sheath on the ferrule.
2) Insert the cable into the ferrule and crimp it with an appropriate crimping tool.

- Part No. of the crimping tool: YNT-1614 Available from J.S.T. Mfg. Co., Ltd

- When peeling off the sheath of the cable, take care not to damage other portions.
- When crimping the ferrule, sufficiently check the status of the ferrule and cable. If the conductors of the cable stick out from the insulation cover or protrude excessively from the tip of the ferrule, accidents such as an electric shock and fire from a short circuit may result.

2. Insert the cable to the connector in the following 2 methods.
(a) Insert the cable using the supplied handle lever.
(b) Insert the cable using a flat-blade screwdriver (Edge width: 3.0 to 3.5 mm).

specifications

Cables Compatible with Connector>

Conductor Size

VTUB-0.5 (J.S.T. Mfg. Co., Ltd)

- Take off the connector from the Servo Driver before making connection.
- Insert only one cable into each one of cable insertion slot.
- Pay attention to injury by screw driver.

This is used for USB connection to a personal computer. It is possible to change the parameter setting and perform monitoring.

Application	Symbol	Connector Pin No.	Contents
USB signal terminal	VBUS	1	Use for communication with personal
	D-	2	
	D+	3	
	-	4	Do not connect.
	GND	5	Connected to ground of control circuit.

4. Wiring to the connector, X2 Connecting communication connector

This is used for connection to the host controller when two or more units are used. RS232 and RS485 interfaces are supplied.

Application	Symbol	Connector Pin No.	Contents
Signal ground	GND	1	Connected to ground of control circuit.
NC	-	2	Do not connect.
RS232 signal	TXD	3	RS232 The transmission / reception method.
	RXD	4	
	$485-$	5	$485+$
	$485-$	7	RS485
The transmission / reception method.			

Connector (plug): 2040008-1 (optional, available from Tyco Electronics)
[Connector pin assignment]

Remarks ‥?

[^21]Related page...?:

- This servo driver features 2 kinds of communication function, RS232 and RS485, and you can use in 3 connecting methods.

To communicate with a single driver through RS232

Connect the host (PC or controller) to an driver through RS232.
[How to connect]

To communicate with multiple drivers through RS232 and RS485

By connecting the host (PC and host controller) and one driver via RS232 and connecting other drivers via RS485 each other, you can connect multiple drivers.

Shut off both powers of the PC andthe driver before inserting/pulling out the connector.

Set the axis number (Pr5.31) of driver to be connected to the host through RS232 to 0 .

Note - You can connect up to 32 drivers with the host.

- For details, refer to P.7-27, "Communication"of Supplement.

To communicate with multiple drivers only through RS485

Communications between the host (PC or controller) and multiple drivers can be made through RS485.

Note - You can connect up to 31 drivers with the host.

- For details, refer to P.7-27, "Communication"of Supplement.
- X1 to X7 are used for the secondary circuit. To connect these terminals to the primary power supply (particularly, the 24 VDC power supply for control, the 24 VDC power supply for brake, and the 24 VDC power supply for regenerative resistor [H-frame only]), insulation is required. Do not connect these terminals to the same power supply.
Note
- Only for position control type is not provided with X2.

5. Wiring to the connector, X3

A safety by-pass plug is supplied as standard equipment. Do not disconnect it in normal times.
When controlling the safety function from the connected host controller, accessory connector cannot be used. Prepare and wire the connector (option) as specified below.
Since the standard connector cannot be used when controlling the safety function from the host controller, purchase the optional connector and make connection as shown below.

Application	Symbol	Connector Pin No.	Contents
NC	-	1	Do not connect.
	-	2	
Safety input 1	SF1-	3	These are two independent circuits that turn off the operation signal to the power module to shut off the motor current.
	SF1+	4	
Safety input 2	SF2-	5	
	SF2+	6	
EDM output	EDM-	7	This is an output for monitoring the failure of the safety function.
	EDM+	8	
Frame ground	FG	Shell	Connected with protective earth terminal in the servo driver.

Connector (plug): 2013595-1 (optional, available from Tyco Electronics)
[Connector pin assignment]

- X1 to X7 are used for the secondary circuit. To connect these terminals to the primary power supply (particularly, the 24 VDC power supply for control, the 24 VDC power supply for brake, and the 24 VDC power supply for regenerative resistor [H-frame only]), insulation is required. Do not connect these terminals to the same power supply.
- Disconnecting this connector during operation results in immediate stop.
- Only for position control type is not provided with X2.
- P.7-110 "Connector Kit for Safety"

2
 Preparation

 6. Wiring to the connector, X4

 6. Wiring to the connector, X4
 Connection to Host Controller

Tips on wiring

- Peripheral apparatus such as host controller should be located within3m.
${ }^{\circ}$ Separate the main circuit at least 30 cm away. Don't pass them in the same duct, nor bind them together.

Power supply for control signals (Vcc) between COM+ and COM- (VDC) should be prepared by customer.

- Use shield twisted pair for the wiring of command pulse input and encoder signal output.

Don't apply more than 24 V to the control signal output terminals, nor run 50 mA or more to them.
${ }^{-}$When the relay is directly driven by the control output signals, install a diode in parallel with a relay, and in the direction as the Fig. shows. The driver might be damaged without a diode installment, or by reverse direction.
${ }^{\circ}$ Frame ground (FG) and the shell of connector is connected to the earth terminal inside of the driver.

Related page $\cdots \cdot:$

- For details, refer to P.3-18, "Wiring Diagram to the connector, X4" and P.3-30, "Inputs and outputs on connector X4".

- Specifications of the Connector, X4

Connector at driver side	Connecter to be prepared by customer		Manufacturer
	Part name	Part No.	
52986-5079 equivalent	Connecter (soldering type)	54306-5019 equivalent	Molex Inc.
	Connector cover	$\begin{gathered} \text { 54331-0501 } \\ \text { equivalent } \end{gathered}$	
or			
$\begin{gathered} \text { 10250-52A2** } \\ \text { equivalent } \end{gathered}$	Connecter (soldering type)	10150-3000PE equivalent	Sumitomo 3M
	Connector cover	10350-52A0-008 equivalent	

- For details, refer to P.7-109, "Options" of Supplement.
- Tightening torque of the screws for connector (X4) for the connection to the host to be 0.3 to $0.35 \mathrm{~N} \cdot \mathrm{~m}$. Larger tightening torque than these may damage the connector at the driver side.

[^22]Provide a power supply for the external scale on your part or use the following power output (250 mA or less).

Application	Symbol	Connector Pin No.	Contents
Power supply output	EX5V	1	Supply the power of external scale or A, B, Z phase encoder.
	EXOV	2	Connected to ground of control circuit.
I/F of external scale signals	EXPS	3	Serial signal The transmission / reception method.
	/EXPS	4	
A, B, Z phase Endoder signal input	EXA	5	Parallel signal reception Correspondence speed : 4Mpps (after quadruple)
	IEXA	6	
	EXB	7	
	/EXB	8	
	EXZ	9	
	/EXZ	10	
Frame ground	FG	Shell	Connected with protective earth terminal in the servo driver.

Connector (plug) sirial external signal: MUF-PK10K-X (by J.S.T. Mfg. Co., Ltd.)

- Caution

1) The manufacturers applicable external scales for this product are as follows.

- Mitutoyo Corp.
- Magnescale Co., Ltd.

For the details of the external scale product, contact each company.
2)

Recommended external scale ratio is $\mathbf{1 / 4 0} \leq$ External scale ratio ≤ 160
If you set up the external scale ratio to smaller value than 50/position loop gain (Pr1.00 and Pr.1.05), you may not be able to control per 1 pulse unit, even if within the range as described above. Setup of larger scale ratio may result in larger noise. supply (particularly, the 24 VDC power supply for control, the 24 VDC power supply for brake, and the 24 VDC power supply for regenerative resistor [H-frame only]), insulation is required. Do not connect these terminals to the same power supply.

- Only for position control type is not provided with X5.

Wiring Diagram of X5

How to Wiring

Wire the signals from the external scale to the external scale connector, X5.

1) Cable for the external scale to be the twisted pair with bundle shielding and to having the twisted core wire with diameter of $0.18 \mathrm{~mm}^{2}$.
2) Cable length to be max. 20 m . Double wiring for 5 V power supply is recommended when the wiring length is long to reduce the voltage drop effect.
3) Connect the outer film of the shield wire of the external scale to the shield of the junction cable. Also connect the outer film of the shield wire to the shell (FG) of connector X5 of the driver without fail.
4) Separate the wiring to $X 7$ from the power line (L1, L2, L3, B1, B2, B3, U, V. W, © $)$ as much as possible (30 cm or more). Do not pass these wires in the same duct, nor bundle together.
5) Do not connect anything to the vacant pins of X 5 .
6) The maximum power available from the connector X 5 is 250 mA at $5 \mathrm{~V} \pm 5 \%$. If you use an external scale requiring more power, you should provide the suitable power source by yourself. Some external scales need longer initialization period after power up. Your design should meet this operation timing after power up.
7) When driving the external scale from an external power supply, keep the EX5V pin open circuit so that it does not receive any external voltage. Connect the GND circuit (0 V) to EXOV (connector X 5 , pin 2) of the driver to eliminate potential difference.

Input circuit

- EXA, EXB, EXZ input circuit

- X1 to X7 are used for the secondary circuit. To connect these terminals to the primary power supply (particularly, the 24 VDC power supply for control, the 24 VDC power supply for brake, and the 24 VDC power supply for regenerative resistor [H-frame only]), insulation is required. Do not connect these terminals to the same power supply.
Note
- Only for position control type is not provided with X5.

2 8. Wiring to the connector, X6
 Preparation

Tips on Wiring

- Maximum cable length between the driver and the motor to be
 20 m . Consult with a dealer or distributor if you want to use the longer cable than 20m. (Refer to the back cover.)
o Keep this wiring away from the main circuit by 30 cm or more. Don't guide this wiring through the same duct with the main, nor bind them together.
- The voltage of input power to encoder side connector should be in the range 4.90-5.25 VDC.
- When you make your own encoder junction cable (for connectors, refer to P.7-111, "Options (Connector Kit for Motor and Encoder connection)" of Supplement.

1) Refer to the Wiring Diagram below.
2) Cable to be: Shielded twisted pair cable with core diameter of $0.18 \mathrm{~mm}^{2}$ or larger (AWG24), and with higher bending resistance.

3) Use twisted pair cable for corresponding signal/power wiring.
4) Shielding treatment

- Shield wall of the driver side : It solders the shell of Connector X6.
- Shield wall of the motor side :
manufactured by JAE
Small type motor (50W to 750W): connect to 6-pins Large type motor (0.9 W to 15.0 kW): connect to 9 -pins

5) Connect nothing to the empty terminals of each connector. and the 24 VDC power supply for regenerative resistor [H-frame only]), insulation is required. Do not connect these terminals to the same power supply.

Wiring Diagram

- In case of 20-bit incremental encoder

Caution \because Only the type of only for position control

MSME 50W to 750W
[Connector pin] assignment

(Viewed from cable)

Caution \because - Tighten the motor connector mounting screw (M2) with a torque between 0.19 and 0.21 $\mathrm{N} \cdot \mathrm{m}$. To avoid damage, be sure to use only the screw supplied with the connector.

- Do not remove the gasket supplied with the junction cable connector. Securely install the gasket in place. Otherwise, the degree of protection of IP67 will not be guaranteed.

Remarks $\cdots ;$ - X1 to X7 are used for the secondary circuit. To connect these terminals to the primary power supply (particularly, the 24 VDC power supply for control, the 24 VDC power supply for brake, and the 24 VDC power supply for regenerative resistor [H-frame only]), insulation is required. Do not connect these terminals to the same power supply.

- In case of 17-bit absolute encoder

MSME 50W to 750W

 assig
(Viewed from cable)

Caution \cdots • Tighten the motor connector mounting screw (M2) with a torque between 0.19 and 0.21 $\mathrm{N} \cdot \mathrm{m}$. To avoid damage, be sure to use only the screw supplied with the connector.

- Do not remove the gasket supplied with the junction cable connector. Securely install the gasket in place. Otherwise, the degree of protection of IP67 will not be guaranteed.

Remarks $\%$ - Connect the battery for absolute encoder across 5P and 2P of the junction connector (the figure above).

- A battery holder and a battery connection cable should be the option cable or prepared by the user.

MSME 750W (400V), 1.0kW to 5.0kW MDME 400W to 15.0kW
MFME 1.5 kW to 4.5 kW MGME 0.9 kW to 6.0 kW MHME 1.0 kW to 7.5 kW

Remarks $\%$ - Connect the battery for absolute encoder across 6P and 5P of the junction connector (the figure above).

- A battery holder and a battery connection cable should be the option cable or prepared by the user. supply (particularly, the 24 VDC power supply for control, the 24 VDC power supply for brake, and the 24 VDC power supply for regenerative resistor [H-frame only]), insulation is required. Do not connect these terminals to the same power supply.

The connector X 7 of the front panel is for monitor output.
Analogue output : 2 systems
Digital output : 1 systems
In both cases, it is possible to switch the output signal by setting parameters.

Application	Symbol	Connector Pin No.	Contents
Analogue monitor output 1	AM1	1	- Output the analogue signal for monitor. - The amplitude of the output signal is $\pm 10 \mathrm{~V}$. - Output impedance is 1 kW . When connecting a measuring instrument, check its input circuit for impedance matching.
Analogue monitor output 2	AM2	2	3
Signal ground	GND	Connected to ground of control circuit.	
Digital monitor output *	DM	4	• Output the digital signal for monitor. - Output voltage is CMOS level compatible. • Output impedance is 2.2 kW. When connecting a measuring instrument, check its input circuit for impedance matching.
NC	-	5	Do not connect.
NC	-	6	Do not connect.

*1 Position, Velocity, torque, Full closed type.
NC on Only for position control type. Leave this pin unconnected.

- Parameter rerated to monitor output.

Parametr No.		Title	Function		
Class	No.		16		Type of analog
:---					
monitor 1	\quad Select the type of monitor for analog monitor 1.				

*1 Position, Velocity, torque, Full closed type.
Only for position control type is not provided with this function.

- X1 to X7 are used for the secondary circuit. To connect these terminals to the primary power supply (particularly, the 24 VDC power supply for control, the 24 VDC power supply for brake, and the 24 VDC power supply for regenerative resistor [H -frame only]), insulation is required. Do not connect these terminals to the same power supply.
Related page $\cdots:$
- P.4-36... "Details of parameter" • P.7-111 "Connector Kit for Analog Monitor Signal"

10. Timing Chart
 Timing on power-up

Servo-on signal accept timing on power-up

- The above chart shows the timing from AC power-ON to command input.
- Activate the external command input according to the above timing chart.

Caution \cdots *1. In this term Servo-ON input (SRV-ON) turns ON as a hard ware, but operation command can not be received.
*2. S-RDY output will turn on when both conditions are met, initialization of micro computer has been completed and the main power has been turned on.
*3. After Internal control power supply, protective functions are active from approx. 1.5 sec after the start of initializing microcomputer. Please set the signals, especially for protective function, for example over-travel inhibit input (POT, NOT) or external scale input, so as to decide their logic until this term. The lapse time can be changed with Pr6.18 Wait time after power-up.

10. Timing Chart

Alarm

When an Error (Alarm) Has Occurred (at Servo-ON Command)

Caution ... *1. t1 will be a shorter time of either the setup value of Pr4.38[Mechanical brake action at running setup] or elapsing time for the motor speed to fall below Pr4.39[Brake release speed setup].
t 1 will be 0 when the motor is in stall regardless of the setup pf Pr4.37.
*2. When an alarm is generated, the dynamic brake operates according to Pr5.10 Sequence at alarm.

When an Alarm Has Been Cleared (at Servo-ON Command)

Caution $\cdots \%_{0}^{*}$. The alarm clear input recognition time can be changed in $\operatorname{Pr} 5.16$ Alarm clear input setup.

2
 Preparation

Servo-ON/OFF Action While the Motor Is at Stall (Servo-Lock)

Remarks \cdots To turn on/off the servo during normal operation, first stop the motor.

Caution \cdots * * t1 depends on the setup value of Pr4.37 Setup of mechanical brake action at stalling.
*2 The operation of dynamic brake during servo off depends on the setup value of Pr5. 06 Sequence at servo off.
*3. Servo-ON will not be activated until the motor speed falls below approx. $30 \mathrm{r} / \mathrm{min}$.

10. Timing Chart Servo-ON/OFF

Servo-ON/OFF Action While the Motor Is in Motion

Remarks \cdots. Timing at emergency stop or trip. Do not repeat this sequence.

Caution . . * 1. t1 will be a shorter time of either the setup value of Pr4.38 "Mechanical brake action at running setup" or elapsing time for the motor speed to fall below Pr4.39 "Brake release speed setup".
*2. Even though the SRV-ON signal is turned on again during the motor deceleration, Servo-ON will not be activated until the motor stops.
*3. For the action of dynamic brake at alarm occurrence, refer to an explanation of Pr5.06, "Sequence at Servo-OFF" as well.
*4. Servo-ON will not be activated until the motor speed falls below approx. 30r/min.
*5. For the motor energization during deceleration at Servo-OFF depends on the setup value of Pr.5.08, "Sequence at Servo-OFF".

11. Built-in Holding Brake

Outline

In the applications where the motor drives the vertical axis, this brake would be used to hold and prevent the work (moving load) from falling by gravity while the power to the servo is shut off.

Caution...\%

Use this built-in brake for "Holding" purpose only, that is to hold the stalling status. Never use this for "Brake" purpose to stop the load in motion.

Connecting Example

The following shows the example when the brake is controlled by using the brake release output signal (BRK-OFF) of the driver.

Note Caution …

1. The brake coil has no polarity.
2. Power supply for the brake to be provided by customer. Do not co-use the power supply for the brake and for the control signals (VDC).
3. Install a surge absorber as the above Fig. shows to suppress surge voltage generated by ON/OFF action of the relay (RY). When you use a diode, note that the time from the brake release to brake engagement is slower than that of the case of using a surge absorber.
4. For a surge absorber, refer to P.7-124, "Recommended Components" of Supplement.
5. Recommended components are specified to measure the brake releasing time.

Reactance of the cable varies depending on the cable length, and it might generate surge voltage.
Select a surge absorber so that relay coil voltage (max. rating: 30V, 50mA) and terminal voltage may not exceed the rating.

Output Timing of BRK-OFF Signal

- For the brake release timing at power-on, or braking timing at Servo-OFF/Servo-Alarm while the motor is in motion, refer to P.2-61, "Timing Chart".
- With the parameter, Pr4.38 (Setup of mechanical brake action while the motor is in motion), you can set up a time between when the motor enters to a free-run from energized status and when BRK-OFF signal turns off (brake will be engaged), when the Servo-OFF or alarm occurs while the motor is in motion.

Note 1. The lining sound of the brake (chattering and etc.) might be generated while running the motor with built-in brake, however this does not affect any functionality.
2. Magnetic flux might be generated through the motor shaft while the brake coil is energized (brake is open). Pay an extra attention when magnetic sensors are used nearby the motor.

11. Built-in Holding Brake

Specifications

Motor series	Motor output	Static friction torque $\mathrm{N} \cdot \mathrm{m}$	Rotor inertia $\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	$\begin{aligned} & \text { Engaging } \\ & \text { time } \\ & \text { ms } \end{aligned}$	$\begin{gathered} \text { Releasing } \\ \text { time } \\ \mathrm{ms} \end{gathered}$	Exciting current DC A (at cool-off)	Releasing voltage	Permissible work (J) per one braking	Permissible total work $\times 10^{3} \mathrm{~J}$	Permissible angular acceleration $\mathrm{rad} / \mathrm{s}^{2}$
MSMD	50W, 100W	0.29 or less	0.002	35 or less	20 or less	0.3	DC1V or more	39.2	4.9	30000
	200W, 400W	1.27 or less	0.018	50 or less	15 or less	0.36		137	44.1	
	750W	2.45 or less	0.075	70 or less	20 or less	0.42		196	147	
MSME	50W, 100W	0.29 or less	0.002	35 or less	20 or less	0.3	DC1V or more	39.2	4.9	30000
	200W, 400W	1.27 or less	0.018	50 or less	15 or less	0.36		137	44.1	
	750W(200V)	2.45 or less	0.075	70 or less	20 or less	0.42		196	147	
	750W(400V)	2.5 or less	0.33	50 or less	15 or less	0.7	DC2V or more	392	490	10000
	$\begin{gathered} 1.0 \mathrm{~kW}, 1.5 \mathrm{~kW}, \\ 2.0 \mathrm{~kW} \end{gathered}$	7.8 or less			$\begin{aligned} & 15 \text { or less } \\ & (100) \end{aligned}$	0.81				
	3.0 kW	11.8 or less		80 or less						
	$4.0 \mathrm{~kW}, 5.0 \mathrm{~kW}$	16.2 or less	1.35	110 or less	50 or less (130)	0.9		1470	2200	
MDME	400W, 600W	2.5 or less	1.35	50 or less	15 or less	0.70	DC2V or more	392	490	10000
	1.0kW	4.9 or less		80 or less	$\begin{gathered} 70 \text { or less } \\ (200) \end{gathered}$	0.59		588	780	
	$1.5 \mathrm{~kW}, 2.0 \mathrm{~kW}$	13.7 or less		100 or less	50 or less (130)	0.79		1176	1500	
	3.0 kW	16.2 or less		110 or less		0.9		1470	2200	
	4.0kW, 5.0kW	24.5 or less	4.7	80 or less	$\begin{gathered} 25 \text { or less } \\ (200) \end{gathered}$	1.3		1372	2900	5440
	7.5 kW	58.8 or less		150 or less	50 or less	1.4				5000
	$11 \mathrm{~kW}, 15 \mathrm{~kW}$	100 or less	7.1	300 or less	140 or less	1.08		2000	4000	3000
MFME	1.5 kW	7.8 or less	4.7	80 or less	35 or less	0.83	DC2V or more	1372	2900	10000
	2.5 kW	21.6 or less	8.75	150 or less	100 or less	0.75		1470	1500	
	4.5 kW	31.4 or less							2200	
MGME	0.9 kW	13.7 or less	1.35	100 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	0.79	DC2V or more	1176	1500	10000
	2.0 kW	24.5 or less	4.7	80 or less	25 or less (200)	1.3		1372	2900	5440
	3.0 kW	58.8 or less		150 or less	$\begin{array}{\|c} \hline 50 \text { or less } \\ (130) \\ \hline \end{array}$	1.4				
	4.5kW, 6.0kW				50 or less					5000
MHMD	200W, 400W	1.27 or less	0.018	50 or less	15 or less	0.36	DC1V or more	137	44.1	30000
	750W	2.45 or less	0.075	70 or less	20 or less	0.42		196	147	
MHME	1.0 kW	4.9 or less	1.35	80 or less	70 or less (200)	0.59	DC2V or more	588	780	10000
	1.5 kW	13.7 or less		100 or less	$\begin{gathered} 50 \text { or less } \\ (130) \end{gathered}$	0.79		1176	1500	
	$\begin{gathered} 2.0 \mathrm{~kW} \text { to } \\ 5.0 \mathrm{~kW} \end{gathered}$	24.5 or less	4.7	80 or less	$\begin{array}{\|c} \hline 25 \text { or less } \\ (200) \end{array}$	1.3		1372	2900	5440
	7.5 kW	58.8 or less		150 or less	50 or less	1.4				5000

- Excitation voltage is $\mathrm{DC} 24 \mathrm{~V} \pm 10 \%$.
- Releasing time values represent the ones with DC-cutoff using a varistor.

Values in () represent those measured by using a diode (V03C by Hitachi, Ltd.)

- Above values (except static friction torque, releasing voltage and excitation current) represent typical values.
- Backlash of the built-in holding brake is kept $\pm 1^{\circ}$ or smaller at ex-factory point.
- Service life of the number of acceleration/deceleration with the above permissible angular acceleration is more than 10 million times. (Life end is defined as when the brake backlash drastically changes.)

12. Dynamic Brake

This driver (A to G-frame) is equipped with a dynamic brake for emergency stop.
Pay a special attention to the followings.
The H -frame driver does not incorporate the dynamic brake.

1. Dynamic brake is only for emergency stop.

Do not start/stop the motor by turning on/off the Servo-ON signal (SRV-ON). Otherwise it may damage the dynamic brake circuit of the driver.

The Motor becomes a dynamo when driven externally and short circuit current occurred while dynamic brake is activated may cause smoking or fire.
2. Dynamic brake is a short-duration rating, and designed for only emergency stop. Allow approx. 10 minutes pause when the dynamic brake is activated during high-speed running. (F-frame(200V), G-frame(200V/400V) built-in dynamic brake resistor is capable of handling up to 3 continuous halts at the rated revolutions with max. permissible inertia. When overheated under more critical operating conditions, the brake will blow out and should be replaced with a new one.)

- You can activate the dynamic brake in the following cases.

1) When the main power is turned off
2) At Servo-OFF
3) When one of the protective function is activated.
4) When over-travel inhibit input (NOT, POT) of connector $X 4$ is activated In the above cases from 1) to 4), you can select either activation of the dynamic brake or making the motor free-run during deceleration or after the stop, with parameter.
Note that when the control power is off, for A to F-frame driver, the dynamic brake will be kept actived, and for G and H -frame driver, the dynamic brake will be kept released.

- If the built-in dynamic brake resistor of the G-frame driver is insufficient, external dynamic brake resistors can be connected.
- For the H-frame driver, external dynamic brake resistors can be connected. Connections of the external dynamic brake resistors are the same as those of the G-frame driver. (The DB3 and DB4 terminals are not provided.)
- Use the following resistors as the external dynamic brake resistors. (To be prepared by user)

Driver		Resistance specifications per piece		Quantity of use
Frame	Voltage	Resistance	Electric power	
G, H	200 V	1.2Ω	400 W	3 pcs.
G, H	400 V	4.8Ω	400 W	3 pcs.

[^23]G-frame, 200 V

Remarks \cdots

- Should be the same rating as that of the magnetic contactor for main circuit.
- Provide an auxiliary contact ${ }^{\left({ }^{(1)}\right)}$ as protection means so that servo ON will not occur in the external sequence even if the contact deposits.

Dynamic Brake Resistor (to be supplied by customer)

Remarks \cdots;

-When you use an external dynamic brake resistor, install an external protective apparatus, such as thermal fuse without fail.

- Mount the dynamic brake resistor on incombustible material such as metal.
- Do not use an external dynamic brake resistor together with the built-in resistor.
- Provide one dynamic brake resistor for each phase.
-When using an external dynamic brake, be sure to use the resistor.
Do not make short circuit.

Terminals DB1, DB2, DB3 and DB4

- To connect an external dynamic brake resistor, disconnect the shorting bar between DB3 and DB4.
- Connect a magnetic contactor (for control) for the external dynamic brake between L1C and DB1.
- Provide an external protective device (e.g. thermal fuse) between DB2 and LC2.

Remarks . \%

- The voltage applied across DB1 and DB2 must be 300 VAC or below or 100 VDC or below.

Pin NC

- Do not connect anything.

G-frame, 400 V

Remarks …s

-Should be the same rating as that of the magnetic contactor for main circuit.

- Provide an auxiliary contact ${ }^{\left({ }^{(1)}\right)}$ as protection means so that servo ON will not occur in the external sequence even if the contact deposits.

Dynamic Brake Resistor (to be supplied by customer)

Remarks - \%

-When you use an external dynamic brake resistor, install an external protective apparatus, such as thermal fuse without fail.

- Mount the dynamic brake resistor on incombustible material such as metal.
- Do not use an external dynamic brake resistor together with the built-in resistor.
- Provide one dynamic brake resistor for each phase.
-When using an external dynamic brake, be sure to use the resistor.
Do not make short circuit.

Terminals DB1, DB2, DB3 and DB4

- To connect an external dynamic brake resistor, disconnect the shorting bar between DB3 and DB4.
-Connect a magnetic contactor (for control) for the external dynamic brake between L1C and DB1.
- Provide an external protective device (e.g. thermal fuse) between DB2 and the neutral point.

Remarks …s

-The voltage applied across DB1 and DB2 must be 300 VAC or below or 100 VDC or below.

Note

- L1C is connected after the R-phase of the noise filter.
- L1C is not indicated on the driver body.

Pin NC

- Do not connect anything.

1) Setup of driving condition from deceleration to after stop by main power-off (Pr5.07)

Clear Clear Clear Clear Hold Hold Hold Hold Clear Clear

Torque limit value at emergency stop will be that of Pr5.11 (Setup of torque at emergency stop) when the setup value is 8 or 9 .

2) Setup of driving condition from deceleration to after stop by Servo-OFF (Pr5.06)

Torque limit value at emergency stop will be that of $\operatorname{Pr} 5.11$ (Setup of torque at emergency stop) when the setup value is 8 or 9 .

3) Setup of driving condition from deceleration to after stop by activation of protective function (Pr5.10)

When setup value is within the range 4 and 7 , the protection function that supports immediate stop acts according to operation A and the function that does not support acts according to operation B.
During deceleration to stop, the main power supply must be maintained.
When the protection function acts, content of deviation counter is cleared as the alarm is cleared.

4) Setup of driving condition from deceleration to after stop by validation of over-travel inhibit input (Pr5.05)

Sequence at over-travel inhibit input (Pr5.05)

Setup value of Pr5. 05

\qquad

Torque limit value during deceleration will be that of Pr5.11 (Setup of torque at emergency stop) when the setup value is 2 .
Changes will be validated after the control power is turned on.

13. Setup of Parameter and Mode Outline / Setup / Connection

Outline of Parameter

This driver is equipped with various parameters to set up its characteristics and functions. This section describes the function and purpose of each parameter. Read and comprehend very well so that you can adjust this driver in optimum condition for your running requirements.

Setup of Parameter

- You can refer and set up the parameter with either one of the following.

1) front panel of the driver
2) combination of the setup support software, "PANATERM" and PC.

Note \cdots How to control the front panel, refer to P.2-86.

Setup with the PC

It is possible to connect your personal computer to connector X1 of MINAS A5 using a USB cable for personal computer connection. Downloading the setup support software "PANATERM" from our web site and installing it on your personal computer will allow you to perform the following easily.

- With the PANATERM, you can execute the followings.

1) Setup and storage of parameters, and writing to the memory (EEPROM).
2) Monitoring of I / O, pulse input and load factor.
3) Display of the present alarm and reference of the error history.
4) Data measurement of the wave-form graphic and bringing of the stored data.
5) Normal auto-gain tuning
6) Frequency characteristic measurement of the machine system.

Note \cdots Because no production software such as CD-ROM is available, download the setup support software from our web site and install it on your personal computer.

- How to Connect

- USB cable

Connect to X 1 (USB mini-B)

On the driver, use commercially available USB mini-B connector.
The connector on the personal computer side should be in accordance with the specifications of the PC.
When the cable does not have noise filter, attach a signal line noise filter (DVOP1460) to both ends of the cable.

- P.4-2 "Details of Parameter"
- P.7-26 "Setup support software [PANATERM]"
- The parameter No. is displayed in the form of PrX.YY (X: Classification, YY: No.).
- For the details on the parameters, refer to P.4-4 "Details of parameter".

Parametr No.		Class name	Group	page
Class	No.*			
0	00 to 17	Basic setting	Parameter for Basic setting	P.2-74
1	00 to 27	Gain adjustment	Parameter for Gain adjustment	P.2-75
2	00 to 23	Damping control	Parameter for Damping control	P.2-76
3	00 to 29	Verocity/ Torque/ Full-closed control	Parameter for Verocity/ Torque/ Full-closed control	P.2-77
4	00 to 44	I/F monitor setting	Parameter for I/F monitor setting	P.2-78
5	00 to 35	Enhancing setting	Parameter for Enhancing setting	P.2-79
6	00 to 39	Special setting	Parameter for Special setting	P.2-81

* The Parameter No. consists of 2 digits.
- In this document, following symbols represent each mode.

Symbol	Control mode	Setup value of Pr0.01
P	Position control	0
S	Velocity control	1
T	Torque control	2
F	Full-Closed control	6
P/S	Position (1st)/Velocity (2nd) control	3^{*}
P/T	Position (1st)/Torque (2nd) control	4^{*}
S/T	Velocity (1st)/Torque (2nd) control	5^{*}

* When you select the combination mode of 3, 4 or 5, you can select either 1st or 2nd with control mode switching input (C-MODE).

When C-MODE is ON : 1st mode selection
When C-MODE is OFF : 2nd mode selection
Do not enter the command 10 ms before/after the switching.
[Class 0] Basic setting

* Definition of symbols under "Power Off/On" - : if a change is made, it will be reflected upon the parameter when the power to the driver is turned off and then on again.
* Definition of symbols under "Related mode" - P: position control, S: velocity control, T: torque control, F: full closed control
*1 Default settings depend on the combination of driver and motor. Refer to P. 2-82 "Torque limit setting".

[Class 1] Gain adjustment

$\begin{gathered} \text { Parametr } \\ \text { No. } \end{gathered}$		Title	Range	Default		Unit		Related Control Mode				Detailpage
Class	No.				$\begin{array}{\|l\|c} \hline \text { D,E,F } & \text { G,H } \\ \hline \text { frame frame } \end{array}$			P	S	T	F	
1	00	1st gain of position loop	0 to 30000	480	320	0.1/s*		\bigcirc			\bigcirc	
1	01	1st gain of velocity loop	1 to 32767	270	180	$0.1 \mathrm{~Hz}^{*}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
1	02	1st time constant of velocity loop integration	1 to 10000	210	310	$0.1 \mathrm{ms*}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-13
1	03	1st filter of speed detection	0 to 5	0	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
1	04	1st time constant of torque filter	0 to 2500	84	126	0.01 ms		\bigcirc	O	O	\bigcirc	
1	05	2nd gain of position loop	0 to 30000	570	380	0.1/s*		\bigcirc			\bigcirc	
1	06	2nd gain of velocity loop	1 to 32767	270	180	$0.1 \mathrm{Hz*}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
1	07	2nd time constant of velocity loop integration	1 to 10000	100	000	0.1ms*		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
1	08	2nd filter of speed detection	0 to 5	0	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-14
1	09	2nd time constant of torque filter	0 to 2500	84	126	$0.01 \mathrm{~ms}^{*}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
1	10	Velocity feed forward gain	0 to 1000	300	00	0.10\%*		\bigcirc			\bigcirc	
1	11	Velocity feed forward filter	0 to 6400	50	0	$0.01 \mathrm{ms*}$		\bigcirc			\bigcirc	
1	12	Torque feed forward gain	0 to 1000	0	0	0.10\%*		\bigcirc	\bigcirc		\bigcirc	
1	13	Torque feed forward filter	0 to 6400	0	0	$0.01 \mathrm{ms*}$		\bigcirc	\bigcirc		\bigcirc	4-15
1	14	2nd gain setup	0 to 1	1	1	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
1	15	Mode of position control switching	0 to 10	0	0	-		\bigcirc			\bigcirc	
1	16	Delay time of position control switching	0 to 10000	50	0	$0.1 \mathrm{ms*}$		\bigcirc			\bigcirc	4-16
1	17	Level of position control switching	0 to 20000	50	0	-		\bigcirc			\bigcirc	
1	18	Hysteresis at position control switching	0 to 20000	33	3	-		\bigcirc			\bigcirc	4-17
1	19	Position gain switching time	0 to 10000	33	3	$0.1 \mathrm{~ms}^{*}$		\bigcirc			\bigcirc	
1	20	Mode of velocity control switching	0 to 5	0	0	-			\bigcirc			
1	21	Delay time of velocity control switching	0 to 10000	0	0	0.1ms*			\bigcirc			4-18
1	22	Level of velocity control switching	0 to 20000	0	0	-			\bigcirc			
1	23	Hysteresis at velocity control switching	0 to 20000	0	0	-			\bigcirc			
1	24	Mode of torque control switching	0 to 3	0	0	-				\bigcirc		
1	25	Delay time of torque control switching	0 to 10000	0	0	0.1ms*				\bigcirc		
1	26	Level of torque control switching	0 to 20000	0	0	-				\bigcirc		
1	27	Hysteresis at torque control switching	0 to 20000	0	0	-				\bigcirc		

* Definition of symbols under "Power Off/On" - : if a change is made, it will be reflected upon the parameter when the power to the driver is turned off and then on again.
*Definition of symbols under "Related mode" - P: position control, S: velocity control, T: torque control, F: full closed control
Caution \cdots The symbol " *" attached to "Unit". indicates that the digits of setting unit will change if the parameter is set by using the setup support software PANATERM.
Note Parameter describes of this page is P.4-13 to P.4-19.

[Class 2] Damping control

Parametr No.		Title	Range	Default	Unit	$\begin{array}{\|c\|} \hline \text { Turning } \\ \text { on of } \\ \text { power } \\ \text { supply } \end{array}$	RelatedControl Mode				Detailpage
Class	No.			$\begin{array}{\|c\|c\|c\|c\|} \hline \text { A, } \mathbf{A , B} \mathbf{B} & \mathrm{C} & \mathrm{D}, \mathrm{E}, \mathrm{~F} & \mathrm{G}, \mathrm{H} \\ \hline \end{array}$			P	S	T	F	
2	00	Adaptive filter mode setup	0 to 4	0	-		\bigcirc	\bigcirc		\bigcirc	
2	01	1st notch frequency	50 to 5000	5000	Hz		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	02	1st notch width selection	0 to 20	2	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	03	1st notch depth selection	0 to 99	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	04	2nd notch frequency	50 to 5000	5000	Hz		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	05	2nd notch width selection	0 to 20	2	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	06	2nd notch depth selection	0 to 99	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	07	3rd notch frequency	50 to 5000	5000	Hz		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	08	3rd notch width selection	0 to 20	2	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	09	3rd notch depth selection	0 to 99	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-21
2	10	4th notch frequency	50 to 5000	5000	Hz		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	11	4th notch width selection	0 to 20	2	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	12	4th notch depth selection	0 to 99	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	13	Selection of damping filter switching	0 to 3	0	-		\bigcirc			\bigcirc	
2	14	1st damping frequency	0 to 2000	0	$0.1 \mathrm{~Hz}^{*}$		\bigcirc			\bigcirc	
2	15	1st damping filter setup	0 to 1000	0	$0.1 \mathrm{~Hz}^{*}$		\bigcirc			\bigcirc	4-23
2	16	2nd damping frequency	0 to 2000	0	$0.1 \mathrm{~Hz}^{*}$		\bigcirc			\bigcirc	4-22
2	17	2nd damping filter setup	0 to 1000	0	$0.1 \mathrm{~Hz}^{*}$		\bigcirc			\bigcirc	4-23
2	18	3rd damping frequency	0 to 2000	0	$0.1 \mathrm{~Hz}^{*}$		\bigcirc			\bigcirc	4-22
2	19	3rd damping filter setup	0 to 1000	0	$0.1 \mathrm{~Hz}^{*}$		\bigcirc			\bigcirc	4-23
2	20	4th damping frequency	0 to 2000	0	0.1Hz*		\bigcirc			\bigcirc	4-22
2	21	4th damping filter setup	0 to 1000	0	$0.1 \mathrm{~Hz}^{*}$		\bigcirc			\bigcirc	
2	22	Positional command smoothing filter	0 to 10000	0	0.1ms*		\bigcirc			\bigcirc	
2	23	Positional command FIR filter	0 to 10000	0	$0.1 \mathrm{ms*}$		\bigcirc			\bigcirc	4-24

* Definition of symbols under "Power Off/On" - : if a change is made, it will be reflected upon the parameter when the power to the driver is turned off and then on again.
*Definition of symbols under "Related mode" - P: position control, S: velocity control, T: torque control, F: full closed control

Caution $\cdots . \%$ The symbol "* " attached to "Unit". indicates that the digits of setting unit will change if the parameter is set by using the setup support software PANATERM.
Note Parameter describes of this page is P.4-20 to P.4-24.

[Class 3] Verocity/ Torque/ Full-closed control

$\begin{aligned} & \text { Parametr } \\ & \text { No. } \end{aligned}$		Title	Range	Default	Unit	Turning on of power supply	RelatedControl Mode				Detail page
Class	No.						P	S	T	F	
3	00	Speed setup, Internal/External switching	0 to 3	0	-			\bigcirc			
3	01	Speed command rotational direction selection	0 to 1	0	-			\bigcirc			4-25
3	02	Input gain of speed command	10 to 2000	500	$(\mathrm{r} / \mathrm{min}) /$			\bigcirc	\bigcirc		
3	03	Reversal of speed command input	0 to 1	1	-			\bigcirc			
3	04	1st speed of speed setup	-20000 to 20000	0	r/min			\bigcirc			
3	05	2nd speed of speed setup	-20000 to 20000	0	$\mathrm{r} / \mathrm{min}$			\bigcirc			
3	06	3rd speed of speed setup	-20000 to 20000	0	r/min			\bigcirc			
3	07	4th speed of speed setup	-20000 to 20000	0	r/min			\bigcirc			
3	08	5th speed of speed setup	-20000 to 20000	0	r/min			\bigcirc			
3	09	6th speed of speed setup	-20000 to 20000	0	r/min			\bigcirc			4-27
3	10	7th speed of speed setup	-20000 to 20000	0	$\mathrm{r} / \mathrm{min}$			\bigcirc			
3	11	8th speed of speed setup	-20000 to 20000	0	$\mathrm{r} / \mathrm{min}$			\bigcirc			
3	12	Acceleration time setup	0 to 10000	0	$\begin{array}{\|c\|} \hline \mathrm{ms} / \\ (1000 r / m \mathrm{~min}) \end{array}$			\bigcirc			
3	13	Deceleration time setup	0 to 10000	0	$\begin{array}{\|c\|} \hline \mathrm{ms} / \\ (1000 \mathrm{~m} / \mathrm{min}) \end{array}$			\bigcirc			
3	14	Sigmoid acceleration/ deceleration time setup	0 to 1000	0	ms			\bigcirc			
3	15	Speed zero-clamp function selection	0 to 3	0	-			\bigcirc	\bigcirc		4-28
3	16	Speed zero clamp level	10 to 20000	30	r/min			\bigcirc	\bigcirc		
3	17	Selection of torque command	0 to 2	0	-				\bigcirc		
3	18	Torque command direction selection	0 to 1	0	-				\bigcirc		
3	19	Input gain of torque command	10 to 100	30	0.1V/100\%*				\bigcirc		4-29
3	20	Input reversal of torque command	0 to 1	0	-				\bigcirc		
3	21	Speed limit value 1	0 to 20000	0	r/min				\bigcirc		
3	22	Speed limit value 2	0 to 20000	0	r/min				\bigcirc		4-30
3	23	External scale selection	0 to 2	0	-	\bigcirc				\bigcirc	
3	24	Numerator of external scale division	0 to 2^{20}	0	-	\bigcirc				\bigcirc	
3	25	Denominator of external scale division	1 to 2^{20}	10000	-	\bigcirc				\bigcirc	4-31
3	26	Reversal of direction of external scale	0 to 1	0	-	\bigcirc				\bigcirc	
3	27	External scale Z phase disconnection detection disable	0 to 1	0	-	\bigcirc				\bigcirc	
3	28	Hybrid deviation excess setup	1 to 2^{27}	16000	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Command } \\ \text { unit } \end{array} \\ \hline \end{array}$	\bigcirc				\bigcirc	4-32
3	29	Hybrid deviation clear setup	0 to 100	0	Revolution	\bigcirc				\bigcirc	4-32

* Definition of symbols under "Power Off/On" - : if a change is made, it will be reflected upon the parameter when the power to the driver is turned off and then on again.
* Definition of symbols under "Related mode" - P: position control, S: velocity control, T: torque control, F: full closed control

Caution \cdots The symbol " *" attached to "Unit". indicates that the digits of setting unit will change if the parameter is set by using the setup support software PANATERM.
Note \cdots Parameter describes of this page is P.4-25 to P.4-32.

[Class 4] I/F monitor setting

$\begin{array}{\|c\|} \hline \text { Parametr } \\ \text { No. } \\ \hline \end{array}$		Title	Range	Default	Unit	Turning on of supply	$\begin{array}{\|c\|} \hline \text { Related } \\ \text { Control Mode } \\ \hline \end{array}$				Detail page
Class	No.			$\begin{array}{\|c\|c\|c\|c\|} \hline \text { A,B } & \mathbf{C} & \mathrm{D}, \mathrm{E}, \mathrm{~F} & \mathrm{G}, \mathrm{H} \\ \hline \text {-frame } & \text {-frame } & \text {-frame } & \text {-frame } \\ \hline \end{array}$			P	S	T	F	
4	00	SI1 input selection (Pin No.8)	0 to 00FFFFFFh	8553090	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-33
4	01	SI2 input selection (Pin No.9)	0 to 00FFFFFFh	8487297	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	02	SI3 input selection (Pin No.26)	0 to 00FFFFFFh	9539850	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	03	SI4 input selection (Pin No.27)	0 to 00FFFFFFh	394758	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	04	SI5 input selection (Pin No.28)	0 to 00FFFFFFh	4108	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	05	SI6 input selection (Pin No.29)	0 to 00FFFFFFh	197379	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-34
4	06	SI7 input selection (Pin No.30)	0 to 00FFFFFFh	3847	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	07	SI8 input selection (Pin No.31)	0 to 00FFFFFFh	263172	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	08	SI9 input selection (Pin No.32)	0 to 00FFFFFFh	328965	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	09	SI10 input selection (Pin No.33)	0 to 00FFFFFFh	3720	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	10	SO1 output selection ($\left.\begin{array}{l}\text { Pin No. 10, 11 } \\ \text { Line driver output }\end{array}\right)$	0 to 00FFFFFFh	197379	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	11	SO2 output selection ($\binom{$ Pin No. 34, 35}{ Line driver output }	0 to 00FFFFFFh	131586	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	12	$\text { SO3 output selection }\binom{\text { Pin No. } 36,37}{\text { Line driver output }}$	0 to 00FFFFFFh	65793	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	13	SO4 output selection ($\left.\begin{array}{l}\text { Pin No.38, 39 } \\ \text { Line driver output }\end{array}\right)$	0 to 00FFFFFFh	328964	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-35
4	14	SO5 output selection ($\binom{$ Pin No. 12}{ Open collector output }	0 to 00FFFFFFh	460551	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	15	$\text { SO6 output selection }\binom{\text { Pin No. } 40}{\text { Open collector output }}$	0 to 00FFFFFFh	394758	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	16	Type of analog monitor 1	0 to 21	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	17	Analog monitor 1 output gain	0 to 214748364	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	18	Type of analog monitor 2	0 to 21	4	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-36
4	19	Analog monitor 2 output gain	0 to 214748364	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	20	Type of digital monitor	0 to 3	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	21	Analog monitor output setup	0 to 2	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	22	Analog input 1 (Al1) offset setup	-5578 to 5578	0	0.366 mV		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	23	Analog input 1 (AI1) filter	0 to 6400	0	$0.01 \mathrm{~ms}^{*}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	24	Analog input 1 (Al1) overvoltage setup	0 to 100	0	0.1V*		\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-38
4	25	Analog input 2 (Al2) offset setup	-342 to 342	0	5.86 mV		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	26	Analog input 2 (AI2) filter	0 to 6400	0	$0.01 \mathrm{ms*}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	27	Analog input 2(AI2) overvoltage setup	0 to 100	0	$0.1 \mathrm{~V}^{*}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	28	Analog input 3 (AI3) offset setup	-342 to 342	0	5.86 mV		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	29	Analog input 3 (AI3) filter	0 to 6400	0	$0.01 \mathrm{~ms}^{*}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-39

* Definition of symbols under "Power Off/On" - : if a change is made, it will be reflected upon the parameter when the power to the driver is turned off and then on again.
* Definition of symbols under "Related mode" - P: position control, S: velocity control, T: torque control, F: full closed control

Caution … The symbol " * " attached to "Unit". indicates that the digits of setting unit will change if the parameter is set by using the setup support software PANATERM.
Note Parameter describes of this page is P.4-33 to P.4-39.

$\begin{array}{\|c} \hline \begin{array}{c} \text { Parametr } \\ \text { No. } \end{array} \\ \hline \end{array}$		Title	Range	Default	Unit	Turning on of power supply	Related Control Mode				Detail page
Class	No.						P	S	T	F	
4	30	Analog input 3 (AI3) overvoltage setup	0 to 100	0	$0.1 \mathrm{~V}^{*}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	31	Positioning complete (In-position) range	0 to 262144	10	$\underset{\text { unit }}{C o m m a n d}$		\bigcirc			\bigcirc	
4	32	Positioning complete (In-position) output setup	0 to 3	0	-		\bigcirc			\bigcirc	
4	33	INP hold time	0 to 30000	0	1 ms		\bigcirc			\bigcirc	
4	34	Zero-speed	10 to 20000	50	r/min		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	35	Speed coincidence range	10 to 20000	50	r/min			\bigcirc			
4	36	At-speed (Speed arrival)	10 to 20000	1000	r/min			\bigcirc	\bigcirc		
4	37	Mechanical brake action at stalling setup	0 to 10000	0	1 ms		\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-41
4	38	Mechanical brake action at running setup	0 to 10000	0	1 ms		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	39	Brake release speed setup	30 to 3000	30	r/min	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	40	Selection of alarm output 1	0 to 10	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	41	Selection of alarm output 2	0 to 10	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-42
4	42	2nd Positioning complete (In-position) range	0 to 262144	10	$\underset{\text { unit }}{\text { Command }}$		\bigcirc			\bigcirc	

* Definition of symbols under "Power Off/On" - : if a change is made, it will be reflected upon the parameter when the power to the driver is turned off and then on again.
* Definition of symbols under "Related mode" - P: position control, S: velocity control, T: torque control, F: full closed control

[Class 5] Enhancing setting

Parametr No.		Title	Range	Default	Unit	Turning on of powersupply	RelatedControl Mode				Detail page
Class	No.						P	S	T	F	
5	00	2nd numerator of electronic gear	0 to 2^{30}	0	-		\bigcirc			\bigcirc	
5	01	3rd numerator of electronic gear	0 to 2^{30}	0	-		\bigcirc			\bigcirc	
5	02	4th numerator of electronic gear	0 to 2^{30}	0	-		\bigcirc			\bigcirc	
5	03	Denominator of pulse output division	0 to 262144	0	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	04	Over-travel inhibit input setup	0 to 2	1	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	05	Sequence at over-travel inhibit	0 to 2	0	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	06	Sequence at Servo-Off	0 to 9	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	07	Sequence at main power OFF	0 to 9	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	08	LV trip selection at main power OFF	0 to 1	1	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	09	Detection time of main power off	70 to 2000	70	1 ms	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

*Definition of symbols under "Power Off/On" - : if a change is made, it will be reflected upon the parameter when the power to the driver is turned off and then on again.

* Definition of symbols under "Related mode" - P: position control, S: velocity control, T: torque control, F: full closed control

Note Parameter describes of this page is P.4-39 to P.4-45.

$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Parametr } \\ \text { No. } \end{array} \\ \hline \end{array}$		Title	Range	Default	Unit		Related Control Mode				Detail page
Class	No.			$\begin{array}{\|c\|c\|c\|c\|} \hline \mathrm{A}, \mathrm{~B} & \mathrm{C} & \mathrm{D}, \mathrm{E}, \mathrm{~F} & \mathrm{G}, \mathrm{H} \\ \hline \text {-frame } & \text {-frame } & \text {-frame } & \text {-frame } \\ \hline \end{array}$			P	S	T	F	
5	10	Sequence at alarm	0 to 7	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-45
5	11	Torque setup for emergency stop	0 to 500	0	\%		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	12	Over-load level setup	0 to 500	0	\%		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	13	Over-speed level setup	0 to 20000	0	r/min		\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-46
5	14	Motor working range setup	0 to 1000	10	$\begin{array}{\|c\|} \hline 0.1 \\ \text { revolution* } \end{array}$		\bigcirc			\bigcirc	
5	15	I/F reading filter	0 to 3	0	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	16	Alarm clear input setup	0 to 1	0	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	17	Counter clear input mode	0 to 4	3	-		\bigcirc			\bigcirc	
5	18	Invalidation of command pulse inhibit input	0 to 1	1	-		\bigcirc			\bigcirc	4-47
5	19	Command pulse inhibit input reading setup	0 to 4	0	-	\bigcirc	\bigcirc			\bigcirc	
5	20	Position setup unit select	0 to 1	0	-	\bigcirc	\bigcirc			\bigcirc	
5	21	Selection of torque limit	0 to 6	1	-		\bigcirc	\bigcirc		\bigcirc	4-48
5	22	2nd torque limit	0 to 500	500*1	\%		\bigcirc	\bigcirc		\bigcirc	
5	23	Torque limit switching setup 1	0 to 4000	0	ms/100\%		\bigcirc	\bigcirc		\bigcirc	
5	24	Torque limit switching setup 2	0 to 4000	0	ms/100\%		\bigcirc	\bigcirc		\bigcirc	
5	25	External input positive direction torque limit	0 to 500	$500^{* 1}$	\%		\bigcirc	\bigcirc		\bigcirc	4-49
5	26	External input negative direction torque limit	0 to 500	500*1	\%		\bigcirc	\bigcirc		\bigcirc	
5	27	Input gain of analog torque limit	10 to 100	30	0.1V/100\%**		\bigcirc	\bigcirc		\bigcirc	
5	28	LED initial status	0 to 35	1	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	29	RS232 baud rate setup	0 to 6	2	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-50
5	30	RS485 baud rate setup	0 to 6	2	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	31	Axis address	0 to 127	1	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	32	Command pulse input maximum setup	250 to 4000	4000	kpulse/s	\bigcirc	\bigcirc			\bigcirc	
5	33	Pulse regenerative output limit setup	0 to 1	0	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-51
5	34	For manufactuer's use	-	4	-						
5	35	Front panel lock setup	0 to 1	0	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	

* Definition of symbols under "Power Off/On" - : if a change is made, it will be reflected upon the parameter when the power to the driver is turned off and then on again.
* Definition of symbols under "Related mode" - P: position control, S: velocity control, T: torque control, F: full closed control
*1 Default settings depend on the combination of driver and motor. Refer to P. 2-82 "Torque limit setting".

Caution \cdots. The symbol " * " attached to "Unit". indicates that the digits of setting unit will change if the parameter is set by using the setup support software PANATERM.
Note Parameter describes of this page is P.4-45 to P.4-51.

[Class 6] Special setting

$\begin{aligned} & \text { Parametr } \\ & \text { No. } \end{aligned}$		Title	Range	Default	Unit	Turning on of power supply	RelatedControl Mode				Detail page
Class	No.			$\begin{array}{\|c\|c\|c\|c\|} \hline \text { A,B } & \mathbf{C} & \mathrm{D}, \mathrm{E}, \mathrm{~F} & \mathrm{G}, \mathrm{H} \\ \hline \text {-frame } & \text {-frame } & \text {-frame } & \text {-frame } \\ \hline \end{array}$			P	S	T	F	
6	00	Analog torque feed forward conversion gain	0 to 100	0	0.1V/100\%*		\bigcirc	\bigcirc		\bigcirc	
6	02	Velocity deviation excess setup	0 to 20000	0	$\mathrm{r} / \mathrm{min}$		\bigcirc				
6	04	JOG trial run command speed	0 to 500	300	r/min		\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-51
6	05	Position 3rd gain valid time	0 to 10000	0	$0.1 \mathrm{ms*}$		\bigcirc			\bigcirc	
6	06	Position 3rd gain scale factor	50 to 1000	100	\%		\bigcirc			\bigcirc	
6	07	Torque command additional value	-100 to 100	0	\%		\bigcirc	\bigcirc		\bigcirc	
6	08	Positive direction torque compensation value	-100 to 100	0	\%		\bigcirc			\bigcirc	
6	09	Negative direction torque compensation value	-100 to 100	0	\%		\bigcirc			\bigcirc	4-52
6	10	Function expansion setup	0 to 63	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	11	Current response setup	50 to 100	100	\%		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	13	Current response setup	0 to 10000	250	\%		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	14	Emergency stop time at alarm	0 to 1000	200	1 ms		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	15	2nd over-speed level setup	0 to 20000	0	r/min		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	16	For manufacturer's use	-	0	-	\bigcirc					4-53
6	17	Front panel parameter writing selection	0 to 1	0	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	18	Power-up wait time	0 to 100	0	0.1s*	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	19	Encoder Z phase setup	0 to 32767	0	pulse	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	20	Z-phase setup of external scale	0 to 400	0	$\mu \mathrm{s}$	\bigcirc				\bigcirc	
6	21	Serial absolute external scale Z phase setup	0 to 2^{28}	0	pulse	\bigcirc				\bigcirc	4-54
6	22	A, B phase external scale pulse output method selection	0 to 1	0	-	\bigcirc				\bigcirc	
6	23	Disturbance torque compensating gain	-100 to 100	0	\%		\bigcirc	\bigcirc			
6	24	Disturbance observer filter	0 to 2500	53	$0.01 \mathrm{~ms}^{*}$		\bigcirc	\bigcirc			
6	27	Alarm latch time selection	0 to 10	5	s	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-55
6	31	Real time auto tuning estimation speed	0 to 3	1	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	32	Real time auto tuning custom setup	-32768 to 32767	0	-		\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-56
6	33	For manufacturer's use	-	1000	-						
6	34	Hybrid vibration suppression gain	0 to 30000	0	0.1/s*					\bigcirc	
6	35	Hybrid vibration suppression filter	0 to 6400	10	$0.01 \mathrm{~ms}^{*}$					\bigcirc	
6	37	Oscillation detecting level	0 to 1000	0	0.1\%*		\bigcirc	\bigcirc	\bigcirc	\bigcirc	,
6	38	Alarm mask setup	-32768 to 32767	4	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	39	For manufactuer's use	-	0	-						

* Definition of symbols under "Power Off/On" - : if a change is made, it will be reflected upon the parameter when the power to the driver is turned off and then on again.
* Definition of symbols under "Related mode" - P: position control, S: velocity control, T: torque control, F: full closed control

Caution $\cdots \%$ The symbol " * " attached to "Unit". indicates that the digits of setting unit will change if the parameter is set by using the setup support software PANATERM.
Note \ldots Parameter describes of this page is P.4-51 to P.4-57.

Torque limit setup range is 0 to 300 and default is 300 except the combinations of the motor and the driver listed in the table below.

Frame	Model No.	Applicable motor	Max. value of torque limit	Frame	Model No.	Applicable motor	Max. value of torque limit
D	MDDHT5540	MGME092G**	225	G	MGDHTC3B4	MGME602G**	272
		MGME092S**	225			MGME602S**	272
	MDDHT3420	MGME094G**	225			MDME752G**	265
		MGME094S**	225			MDME752S**	265
F	MFDHTA390	MGME202G**	250			MHME752G**	265
		MGME202S**	250			MHME752S**	265
	MFDHTB3A2	MGME302G**	250		MGDHTB4A2	MGME604G**	272
		MGME302S**	250			MGME604S**	272
		MGME452G**	262			MDME754G**	267
		MGME452S**	262			MDME754S**	267
	MFDHT5440	MGME204G**	250			MHME754G**	267
		MGME204S**	250			MHME754S**	267
	MFDHTA464	MGME304G**	250	H	MHDHTC3B4	MDMEC12G**	265
		MGME304S**	250			MDMEC12S**	265
		MGME454G**	263			MDMEC52G**	253
		MGME454S**	263			MDMEC52S**	253
					MHDHTB4A2	MDMEC14G**	265
						MDMEC14S**	265
						MDMEC54G***	253
						MDMEC54S**	253

- The above limit applies to Pr0.13 (1st torque limit), Pr5.22 (2nd torque limit), Pr5.11 (Torque setup for emergency stop), Pr5.25 (External input positive direction torque limit) and Pr5.26(External input negative direction torque limit).

Caution \cdots. When you change the motor model, above max. value may change as well. Check and reset the setup values of Pr0.13, Pr5.22, Pr5.11, Pr5.25 and Pr5.26.

13. Setup of Parameter and Mode

Setup of Torque Limit

Cautions on Replacing the Motor

As stated previously, torque limit setup range might change when you replace the combination of the motor and the driver. Pay attention to the followings.

1. When the motor torque is limited,

When you replace the motor series or to the different wattage motor, you need to reset the torque limit setup because the rated toque of the motor is different from the previous motor. (see e.g.1)
e.g.1) before replacing the motor
after replacing the motor
MADHT1507

2. When you want to obtain the max. motor torque,

You need to reset the torque limiting setup to the upper limit, because the upper limit value might be different from the previous motor. (see e.g.2)

14.

Setup of command division and multiplication ratio (electronic gear ratio)

Driver

Encoder pulse counts : E [P/r]

* 1,048,576 (=20bit)
* 131,072 (=17bit)

Example of ball screw drive by servo motor
Here we take a ball screw drive as an example of machine.
A travel distance of a ball screw M [mm] corresponding to travel command P1 [P], can be described by the following formula (1) by making the lead of ball screw as $L[\mathrm{~mm}]$

$$
\begin{equation*}
M=P 1 \times(D / E) \times(1 / R) \times L . \tag{1}
\end{equation*}
$$

\qquad
therefore, position resolution (travel distance ΔM per one command pulse) will be described by the formula (2)

$$
\begin{equation*}
\Delta M=(D / E) \times(1 / R) \times L . \tag{2}
\end{equation*}
$$

\qquad
modifying the above formula (2), electronic gear ratio can be found in the formula (3).

$$
\begin{equation*}
D=(\Delta M \times E \times R) \times L \tag{3}
\end{equation*}
$$

\qquad
Actual traveling velocity of ball screw, $\mathrm{V}[\mathrm{mm} / \mathrm{s}]$ can be described by the formula (4) and the motor rotational speed, N at that time can be described by the formula (5).

$$
\begin{align*}
& V=F \times(D / E) \times(1 / R) \times L \tag{4}\\
& N=F \times(D / E) \times 60 \ldots \tag{5}
\end{align*}
$$

modifying the above formula (5), electronic gear ratio can be found in the formula (6).

$$
\begin{equation*}
D=(N \times E) /(F \times 60) \tag{6}
\end{equation*}
$$

Note \cdots 1) Make a position resolution, ΔM as approx. $1 / 5$ to $1 / 10$ of the machine positioning accuracy, $\Delta \varepsilon$, considering a mechanical error.
2) Set up Pr0.09 and PrO. 10 to any values between 1 to 2^{30}.
3) The desired setting can be determined by selecting value of numerator and denominator of electronic gear. However, an excessively high division or multiplication ratio cannot guarantee the operation. The ratio should be in a range between 1/1000 and 1000. Excessively high multiplication ratio will cause Err27.2 (command pulse multiplication error protection) due to varying command pulse input or noises, even if the other settings are within the specified range.
4)

2^{n}	Decimal
2^{0}	1
2^{1}	2
2^{2}	4
2^{3}	8
2^{4}	16
2^{5}	32
2^{6}	64
2^{7}	128
2^{8}	256
2^{9}	512
2^{10}	1024

2^{n}	Decimal
2^{11}	2048
2^{12}	4096
2^{13}	8192
2^{14}	16384
2^{15}	32768
2^{16}	65536
2^{17}	131072
2^{18}	262144
2^{19}	524288
2^{20}	1048576

	Electronic gear ratio $\quad \mathrm{D}=\frac{\Delta \mathrm{M} \times \mathrm{E} \times \mathrm{R}}{L}$	$\mathrm{D}=\frac{\operatorname{Pr0.09}}{\operatorname{Pr0.10}}$
Lead of ball screw, $L=10 \mathrm{~mm}$ Gear reduction ratio, $R=1$ Position resolution, $\Delta \mathrm{M}=0.005 \mathrm{~mm}$ Encoder, 17-bit ($\mathrm{E}=2^{17} \mathrm{P} / \mathrm{r}$)	$\frac{0.0005 \times 2^{17} \times 1}{10}=\frac{5 \times 2^{17}}{10 \times 10^{4}}=\frac{655360}{100000}$	$\begin{aligned} & \text { Pro. } 09=655360 \\ & \operatorname{Pr0.10}=100000 \end{aligned}$
Lead of ball screw, $L=20 \mathrm{~mm}$ Gear reduction ratio, $R=1$ Position resolution, $\Delta \mathrm{M}=0.0005 \mathrm{~mm}$ Encoder, 17-bit ($\mathrm{E}=2^{17} \mathrm{P} / \mathrm{r}$)	$\frac{0.00005 \times 2^{17} \times 1}{20}=0.32768 \quad \begin{aligned} & \mathrm{D}<1, \text { hence } \\ & \text { use 120-bit. } \end{aligned}$	" $D=1$ " is the condition for minimum resolution
Encoder : 20-bit ($\mathrm{E}=2{ }^{20} \mathrm{P} / \mathrm{r}$)	$\frac{0.00005 \times 2^{20} \times 1}{20}=\frac{5 \times 2^{20}}{20 \times 10^{5}}=\frac{5242880}{2000000}$	$\begin{aligned} & \operatorname{Pr0.09}=5242880 \\ & \operatorname{Pr0.10}=2000000 \end{aligned}$

	Motor rotational speed (r/min), $N=F \times \frac{D}{E} \times 60$
Lead of ball screw, $L=20 \mathrm{~mm}$ Gear reduction ratio, $R=1$ Position resolution, $\Delta \mathrm{M}=0.0005 \mathrm{~mm}$ Line driver pulse input, 500kpps Encoder, 17-bit	$\begin{aligned} & 500000 \times \frac{1 \times 2^{15}}{10000} \times \frac{1}{2^{17}} \times 60 \\ & =50 \times 60 \times \frac{1}{2^{2}}=750 \end{aligned}$
Ditto To make it to $2000 \mathrm{r} / \mathrm{min}$.	Electronic gear ratio $\quad \mathrm{D}=\frac{\mathrm{N} \times \mathrm{E}}{\mathrm{F} \times 60} \mathrm{D}=\frac{\mathrm{Pr0.09}}{\text { Pro.10 }}$
	$D=\frac{2000 \times 2^{17}}{500000 \times 60}=\frac{2000 \times 2^{17}}{30000000}=\frac{262144000}{30000000} \quad \begin{aligned} & \text { Pro.09 }=262144000 \\ & \text { Pro. } 10=30000000\end{aligned}$
	Travel distance per command pulse (mm) (Position resolution) $\Delta M=\frac{D}{E} \times \frac{1}{R} \times L$
	$\frac{2^{15}}{3750} \times \frac{1}{2^{17}} \times \frac{1}{1} \times 20=\frac{1}{3750} \times \frac{20}{2^{2}}=\frac{20}{3750 \times 4}=0.00133 \mathrm{~mm}$

15. How to Use the Front Panel
 Setup

Setup with the Front Panel

Display LED (6-digit)
Switch to error display screen when error
occurs, and LED will flash (about 2Hz).

Initial Status of the Front Panel Display (7 Segment LED)

Status

Front panel display shows the following after turning on the power of the driver.
 (Determined by the setup of Parameter, Pr5.28 "Initial status of LED".)

Upon Occurrence of an Alarm

If a driver alarm is generated, the front panel display shows the following repeatedly.

Below shows possible cause of an alarm.

alarm No.	Alarm	Content
A0	Overload protection	Load factor is 85% or more the protection level.
A1	Over-regeneration alarm	Regenerative load factor is 85% or more the protection level.
A2	Battery alarm	Battery voltage is 3.2 V or lower.
A3	Fan alarm	Fan has stopped for 1 sec.
A4	Encoder communication alarm	The number of successive encoder communication errors exceeds the specified value.
A5	Encoder overheat alarm	The encoder detects overheat alarm.
A6	Oscillation detection alarm	Oscillation or vibration is detected.
A7	Lifetime detection alarm	The life expectancy of capacity or fan becomes shorter than the specified time.
A8	External scale error alarm	The external scale detects the alarm.
A9	External scale communication alarm	The number of successive external scale communication errors exceeds the specified value.

Use each button on the touch panel to select the structure and switch the mode.

\square then shift the digit for data change "."

15. How to Use the Front Panel

Setup of front panel lock

Outline

To prevent operational error e.g. unintentional parameter modification, the front panel may be locked.
Once locked, operations on the panel are limited as follows:

Mode	Locked panel conditions
Monitor Mode	No limitation: all monitored data can be checked.
Parameter Set up Mode	No parameter can be changed but setting can be checked.
EEPROM Writing Mode	Cannot be run. (No display)
Auxiliary Function Mode	Cannot be run except for "Release of front panel lock". (No display)

How to operate

- Related parameters

Parameter No.		Title	Function
Class	No.		
5	35	Setup of front panel lock	Locks the operation attempted from the front panel.

Lock and unlock can be made in one of two ways.

Procedure	Front panel	Setup support software PANATERM
Lock	(1) Set Pr5.35 "Front panel lock" to 1, and writ the setting to EEPROM. (2) Turn on power to the driver. (3) The front panel is locked.	
Unlock	(1) Execute the auxiliary function mode, front panel lock release function.	(1) Set Pr5.35 "Front panel lock" to 0, and writ the setting to EEPROM.
(2) Turn on power to the driver. (3) The front panel is unlocked.	(2) Turn on power to the driver. (3) The front panel is unlocked.	

To change the monitor display setting, select the display option to be changed from " SELECTION display", and press S to change to " EXECUTION display". After completion of changing, press $(\mathbf{S}$ to return to the selection display,

(M) (Mode switch button)

Parameter Setup Mode SELECTION display
$\begin{array}{ll}\text { Note } \cdots & \text { When you turn on the Product for the first time, display shows } r \\ \text { To change this display, change the setup of Pr5. } 28 \text { (Initial status of LED). }\end{array}$

15. How to Use the Front Panel Monitor Mode (EXECUTION display)

(1) Display of positional command deviation [command unit]

Displays positional deviation of the command unit in High order or Low order.

- To switch between Low order (L) and High order (H), press ๔.
(2) Display of motor speed, positional command speed,
velocity control command and torque command
- Motor speed (r/min)

\downarrow Displays the motor speed (r/min).
- Positional command speed (r/min)

4 Displays positional command speed (r/min).

- Velocity control command (r/min)

\downarrow Displays velocity control command (r/min).
- Torque command (\%)

（3）Display of Feedback Pulse Sum，Command Pulse Sum and External Scale Feedback Pulse Sum
－Feedback Pulse Sum［Encoder feedback pulse］

I．．．．．．．Low order
H ．．．High order
－To switch between Low order（L）and High order（ H ），press

$$
139025 \leftrightarrow 4103
$$

－Command Pulse Sum［Command Pulse］

I＿．．．．．．Low order
H．．．．．．．．High order
－To switch between Low order（L）and High order（H），press

－External Scale Feedback Pulse Sum

－To switch between Low order（L）and High order（H），press

$$
139025 \leftrightarrow 4 \quad 103
$$

（4）Display of Control Mode

FロロローにPosition control mode

ほロロローに．．．．Velocity control mode
ローラにゥ！．．．．．Torque control mode
Fロ亡にゥ！．．．．Full－closed control mode

(5) Display of I/O Signal Status

Displays the control input and output signal to be connected to connector X4.
Use this function to check if the wiring is correct or not.

- Shift the flashing decimal point with

- Select In or Out by pressing $\boldsymbol{\wedge}$ or button.

- Select the Pin No. to be monitored by pressing \downarrow.

(Lowest place Pin No. of output signal)
(Highest place Pin No. of input signal)
$\begin{array}{cl}\text { *1 When input signal } & \begin{array}{l}\text { Active : Input signal photocoupler is ON. } \\ \text { Inactive : Input signal photocoupler is OFF. }\end{array} \\ \text { When output signal } & \begin{array}{l}\text { Active : Output signal transistor is ON. } \\ \text { Inactive: Output signal transistor is OFF. }\end{array}\end{array}$

Note
For detail of input/output signal, refer to P.3-30 "Inputs and outputs on connector X4" For detail of Error Code, refer to P.6-2 "Protective Function".
(6) Display of Analog Input Value

- Select the signal No. to be monitored by pressings (4)

Caution $\cdots \therefore$ Voltage exceeding $\pm 10 \mathrm{~V}$ can not be displayed correctly.

(7) Display of Error Factor and Reference of History

<List of error code No.>

Error code		Protective function	Attribute		
Main	Sub		History	Can be cleared	$\begin{aligned} & \text { Immediate } \\ & \text { stop } \end{aligned}$
11	0	Control power supply under-voltage protection		\bigcirc	
12	0	Over-voltage protection	\bigcirc	\bigcirc	
13	0	Main power supply under-voltage protection (between P to N)		\bigcirc	
	1	Main power supply under-voltage protection (AC interception detection)		\bigcirc	
14	0	Over-current protection	\bigcirc		
	1	IPM error protection	\bigcirc		
15	0	Over-heat protection	\bigcirc		\bigcirc
16	0	Over-load protection	\bigcirc	$\bigcirc{ }^{1}$	
18	0	Over-regeneration load protection	\bigcirc		\bigcirc
	1	Over-regeneration Tr error protection	\bigcirc		
21	0	Encoder communication disconnect error protection	\bigcirc		
	1	Encoder communication error protection	\bigcirc		
23	0	Encoder communication data error protection	\bigcirc		
24	0	Position deviation excess protection	\bigcirc	\bigcirc	\bigcirc
	1	Velocity deviation excess protection	\bigcirc	\bigcirc	\bigcirc
25	0	Hybrid deviation excess error protection	\bigcirc		\bigcirc
26	0	Over-speed protection	\bigcirc	\bigcirc	\bigcirc
	1	2nd over-speed protection	\bigcirc	\bigcirc	
27	0	Command pulse input frequency error protection	\bigcirc	\bigcirc	\bigcirc
	2	Command pulse multiplier error protection	\bigcirc	\bigcirc	\bigcirc
28	0	Limit of pulse replay error protection	\bigcirc	\bigcirc	\bigcirc
29	0	Deviation counter overflow protection	\bigcirc	\bigcirc	
30	0	Safety detection		\bigcirc	
33	0	IF overlaps allocation error 1 protection	\bigcirc		
	1	IF overlaps allocation error 2 protection	\bigcirc		
	2	IF input function number error 1 protection	\bigcirc		
	3	IF input function number error 2 protection	\bigcirc		
	4	IF output function number error 1 protection	\bigcirc		
	5	IF output function number error 2 protection	\bigcirc		
	6	CL fitting error protection	\bigcirc		
	7	INH fitting error protection	\bigcirc		

Error code		Protective function	Attribute		
Main	Sub		History	Can be cleared	$\begin{gathered} \text { Immediate } \\ \text { stop } \end{gathered}$
34	0	Software limit protection	\bigcirc	\bigcirc	
36	0 to 2	EEPROM parameter error protection			
37	0 to 2	EEPROM check code error protection			
38	0	Over-travel inhibit input protection		\bigcirc	
39	0	Analog input1 excess protection	\bigcirc	\bigcirc	\bigcirc
	1	Analog input2 excess protection	\bigcirc	\bigcirc	\bigcirc
	2	Analog input3 excess protection	\bigcirc	\bigcirc	\bigcirc
40	0	Absolute system down error protection	\bigcirc	\bigcirc	
41	0	Absolute counter over error protection	\bigcirc		
42	0	Absolute over-speed error protection	\bigcirc	\bigcirc	
43	0	Initialization failure	\bigcirc		
44	0	Absolute single turn counter error protection	\bigcirc		
45	0	Absolute multi-turn counter error protection	\bigcirc		
47	0	Absolute status error protection	\bigcirc		
48	0	Encoder Z-phase error protection	\bigcirc		
49	0	Encoder CS signal error protection	\bigcirc		
50	0	External scale connection error protection	\bigcirc		
	1	External scale communication error protection	\bigcirc		
51	0	External scale status 0 error protection	\bigcirc		
	1	External scale status 1 error protection	\bigcirc		
	2	External scale status 2 error protection	\bigcirc		
	3	External scale status 3 error protection	\bigcirc		
	4	External scale status 4 error protection	\bigcirc		
	5	External scale status 5 error protection	\bigcirc		
55	0	A-phase connection error protection	\bigcirc		
	1	B-phase connection error protection	\bigcirc		
	2	Z-phase connection error protection	\bigcirc		
87	0	Compulsory alarm input protection		\bigcirc	
95	0 to 4	Motor automatic recognition error protection			
Other number		Other error	\bigcirc		

Note History... The error will be stored in the error history.
Can be cleared... To cancel the error, use the alarm clear input (A-CLR).
If the alarm clear input is not effective, turn off power, remove the cause of the error and then turn on power again.
Immediate stop...Instantaneous controlled stop upon occurrence of an error.
(Setting of "Pr.5.10 Sequence at alarm" is also required.)
Caution ... 1) Certain alarms are not included in the history. For detailed information on alarms e.g. alarm numbers, refer to P.6-2.
2) When one of the errors which are listed in error history occurs, this error and history o shows the same error No.

(8) Alarm Display

- To display the alarm occurrence condition, press $\boldsymbol{\wedge}$ button.

alarm No.	Alarm	Content	Latched time ${ }^{* 1}$
A0	Overload protection	Load factor is 85\% or more the protection level.	1 to 10 s or ∞
A1	Over-regeneration alarm	Regenerative load factor is 85% or more the protection level.	10 s or ∞
A2	Battery alarm	Battery voltage is 3.2 V or lower.	Fixed at ∞
A3	Fan alarm	Fan has stopped for 1 sec.	1 to 10 s or ∞
A4	Encoder communication alarm	The number of successive encoder communication errors exceeds the specified value.	1 to 10 s or ∞
A5	Encoder overheat alarm	The encoder detects overheat alarm.	1 to 10 s or ∞
A6	Oscillation detection alarm	Oscillation or vibration is detected.	1 to 10 s or ∞
A7	Lifetime detection alarm	Life expectancy of capacitor or fan is short.	Fixed at ∞
A8	External scale error alarm	The external scale detects the alarm.	1 to 10 s or ∞
A9	External scale communication alarm	The number of successive external scale communication errors exceeds the specified value.	1 to 10 s or ∞

${ }^{*} 1$ Alarms can be cleared by using the alarm clear. Because the all existing alarms are kept cleared while the alarm clear input (A-CLR) is kept ON, be sure to turn it OFF during normal operation. Either 1-10s or ∞ can be selected by using user parameter.
Exception: Battery alarm is fixed at ∞ because it is latched by the encoder.
Because the end of life alarm means that the life expectancy cannot be extended, the alarm is set at ∞.
(9) Display of Regenerative Load Factor, Over-load Factor and Inertia Ratio

- Regenerative Load Factor

Display the ratio (\%) against the alarm trigger level of regenerative protection.
This is valid when Pr0. 16 (External regenerative resistor setup) is 0 or 1 .

- Over-load Factor

Displays the ratio (\%) against the rated load.
Refer to P.6-14, "Overload Protection Time Characteristics" of When in Trouble.

- Inertia Ratio

Value of Pr0. 04 (Inertia Ratio) will be displayed as it is.

10) Display of the Factor of No-Motor Running

Displays the factor of no-motor running in number.

Control mode
-.......Position control
G....... Velocity control
L.......Torque control
F....... Full-closed control

- Explanation of factor No.

Factor No.	Factor	RelatedControl Mode				Content
		P	S	T	F	
flashing	Occurrence of error/alarm	\bigcirc	\bigcirc	\bigcirc	\bigcirc	An error is occurring, and an alarm is triggered.
00	No particular factor	\bigcirc	\bigcirc	\bigcirc	\bigcirc	No factor is detected for No-motor run. The motor runs in normal case.
01	Main power shutoff	\bigcirc	\bigcirc	\bigcirc	\bigcirc	The main power of the driver is not turned on.
02	No entry of SRV-ON input	\bigcirc	\bigcirc	\bigcirc	\bigcirc	The Servo-ON input (SRV-ON) is not connected to COM-.
03	Over-travel inhibition input is valid	\bigcirc	\bigcirc	\bigcirc	\bigcirc	While Pr5. 04 is 0 (Run-inhibition input is valid), - Positive direction over-travel inhibition input (POT) is open and speed command is Positive direction. - Negative direction over-travel inhibition input (NOT) is open and speed command is Negative direction.
04	Torque limit setup is small	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Either one of the valid torque limit setup value of Pr0.13 (1st) or Pr5. 22 (2nd) is set to 5% or lower than the rating.
05	Analog torque limit input is valid.	\bigcirc	\bigcirc		\bigcirc	While Pr5. 21 is 0 (analog torque limit input accepted), - Positive direction analog torque limit input (P-ATL) is negative voltage and speed command is Positive direction. - Negative direction analog torque limit input (N-ATL) is positive voltage and speed command is Negative direction.
06	INH input is valid.	\bigcirc			\bigcirc	Pr5.18 is 0 (Command pulse inhibition input is valid.), and INH is open.
07	Command pulse input frequency is low.	\bigcirc			\bigcirc	The position command per each control cycle is 1 pulse or smaller due to, - No correct entry of command pulse - No correct connection to the input selected with Pr0.05. - No matching to input status selected with Pr0.06 pr Pro.07.
08	CL input is valid.	\bigcirc			\bigcirc	While Pr5.17 is 0 (Deviation counter clear at level), the deviation counter clear input (CL) is connected to COM-.
09	ZEROSPD input is valid.		\bigcirc	\bigcirc		While Pr3.15 is 1 (Speed zero clamp is valid.), the speed zero clamp input (ZEROSPD) is open.
10	External speed command is small.		\bigcirc			While the analog speed command is selected, the analog speed command is smaller than $0.06[\mathrm{~V}]$.
11	Internal speed command is 0 .		\bigcirc			While the internal speed command is selected, the internal speed command is set to lower than $30[r / \mathrm{min}]$
12	Torque command is small.			\bigcirc		The analog torque command input (SPR or P-ATL) is smaller than 5 [\%] of the rating.
13	Speed limit is small.			\bigcirc		- While Pr3.17 is 0 (speed is limited by 4th speed of internal speed), Pr3.07, (4th speed of speed setup) is set to lower than $30[r / m i n]$. - While Pr3.17 is 1 (speed is limited by SPR input), the analog speed limit input (SPR) is smaller than 0.06 [V].
14	Other factor	\bigcirc	\bigcirc	\bigcirc	\bigcirc	The motor runs at $20[r / m i n]$ or lower even though the factors from 1 to 13 are cleared, (the command is small, the load is heavy, the motor lock or hitting, driver/ motor fault etc.)

Note \cdots * Motor might run even though the other number than 0 is displayed.

Refer to "6.In trouble".

(11) Display of No. of changes in I/O signals

- Shift the flashing decimal point with \varangle.

- The switch of input/output, by pressing $\boldsymbol{\top}$ or button.

- Select the No. of pin, the number of changes on that pin should be displayed, by pressing $\boldsymbol{\Delta}$ or button.

(Lowest place Pin No. of output signal)
(Highest place Pin No. of input signal)

(12) Display of absolute encoder data

- Select the data to be displayed by pressing $\boldsymbol{\top}$ or button.

(13) Display of absolute external scale position

- Displays the absolute position of serial absolute scale.
- If a serial incremental scale, displays the scale position relative to the power on position which is defined as 0.

- Select encoder or external scale by pressing or or \downarrow button.

(14) Display of No. of encoder/ external scale communication errors monitor

- Select encoder or external scale by pressing $\boldsymbol{\square}$ or button.

(15) Display of communication axis address

(16) Display of encoder positional deviation [Encoder unit]

- To switch between Low order (L) and High order (H), press

(17) Display of External Scale Deviation [External Scale Unit]

- To switch between Low order (L) and High order (H), press \qquad
\square
(18) Display of hybrid deviation [Command unit]

- To switch between Low order (L) and High order (H), press \varangle.

$$
139025 \leftrightarrow H \quad 103
$$

(19) Display of voltage across PN [V]

Displays the voltage across PN [V] (only for reference not an instrument)

(20) Display of Software Version

Displays the software version of the driver. (Example of display: Ver 1.00)

(21) Display of driver serial number

- To switch between Low order (L) and High order (H), press or ∇. (Example of display: Serial number 09010001)

（22）Display of motor serial number

－To switch between Low order（L）and High order（H），press（ $\boldsymbol{\wedge})$ or \boxtimes ．
（Example of display：Serial number 09040001）

（23）Display of accumulated operation time

－To switch between Low order（ L ）and High order（ H ），press

（24）Automatic Motor Recognizing Function

F ロ ■ II．．．．．Automatic recognition is valid．
日ッロロー．．．．．．Automatic recognition is invalid．

（25）Display of temperature

(26) Display of safety condition monitor

Gr GaFF

- Select desired monitor option by pressing $\mathbb{\top}$ or button.

- ...Input photocoupler OFF \boldsymbol{F}_{1}...Input photocoupler ON
- ...Input photocoupler OFF Fi...Input photocoupler ON
- ...Output photocoupler OFF \boldsymbol{F}_{1}...Output photocoupler ON

15. How to Use the Front Panel

Parameter Setup Mode
Monitor Mode SELECTION display
Parameter Setup Mode SELECTION display
(Ma) (Mode switch button)

EEPROM Writing Mode SELECTION display

Note

- After setting up parameters, return to SELECT mode, referring to structure of each mode (P.2-88).
- Each parameter has a limit in number of places for upper-shifting.

Parameter Setup Mode SELECTION display

(M) (Mode switch button)

EEPROM Writing Mode SELECTION display

- To write the parameter to EEPROM, press
(S) to change to EXECUTION display.

Note

When you change the parameters which contents become valid after resetting, $r E 5 E t$ will be displayed after finishing wiring. Turn off the control power once to reset.

Auxiliary Function Mode SELECTION display

Caution \cdots 1. When writing error occurs, make writing again. If the writing error repeats many times, this might be a failure.
2. Don't turn off the power during EEPROM writing. Incorrect data might be written. If this happens, set up all of parameters again, and re-write after checking the data.
3. When the error defined by Err11.0 "Under voltage protection of control power supply" occurs, Error is displayed indicating that no writing is made to EEPROM.

EEPROM Writing Mode SELECTION display

(M) (Mode switch button)

(M) (Mode switch button)

Monitor Mode SELECTION display

1) Alarm Clear Screen

This function releases the current alarm status.
Certain alarms will persist. If this is the case, refer to P.6-2 "When in Trouble - Protective Function".

(2) Analog inputs 1 to 3 automatic offset adjustment

This function automatically adjusts offset setting of analog input.
Analog input 1 (Al1)......Pr4. 22 (Analog input 1 (Al1) offset setup)
Analog input 2 (AI2)......Pr4. 25 (Analog input 2 (AI2) offset setup)
Analog input 3 (AI3)......Pr4. 28 (Analog input 1 (AI3) offset setup)

- You cannot write the data only by executing automatic offset adjustment. Execute a writing to EEPROM when you need to reflect the result afterward.
Note
- After completion of the automatic offset adjustment, return to SELECTION display by referring to P.2-88 "Structure of Each Mode".

(3) Motor trial run

You can make a trial run (JOG run) without connecting the Connector, Connector X4 to the host controller such as PLC.

Remarks \cdots

- Separate the motor from the load, detach the Connector, Connector X4 before the trial run.
- Bring the user parameter setups (especially Pr0.04 and Pr1.01 to 1.04) to defaults, to avoid oscillation or other failure.

- Inspection Before Trial Run

(1) Inspection on wiring

- Miswiring? (Especially power input and motor output)
- Short or grounded?
- Loose connection?
(2) Confirmation of power supply and voltage
- Rated voltage ?

(6) Turn to Servo-OFF after finishing the trial run by pressing .

[^24]
- Procedure for Trial Run

Not a servo-ready status. (Shuts off the main when error occurs.)

- Then keep pressing \triangleleft until the display of LED changes to 5rij-an.

Not a Servo-Ready. Or SRV-ON signal is not entered.

- After the Servo-ON of preparation step 2 for trial run, the motor runs at the preset speed with Pr6. 04 (JPG speed) to Positive direction direction by pressing (4) Negative direction by pressing $(\checkmark$.

Caution … - Before starting the trial run, set the gain-related parameters to appropriate values to avoid problems such as oscillation. If the load is removed, be sure to set Pro. 04 "Inertia Ratio" to 0.

- During the trial run, use the velocity control mode. Various settings including parameters should assure safe and positive operation under appropriate velocity control.
- If SRV-ON becomes valid during trial run, the display changes to Error which is normal run through external command.
- After finished trial running, return to SELECTION display, referring to structure of each mode (P.2-88).

4) Clearing of Absolute Encoder

You can clear the multi-turn data of the absolute encoder.

SELECTION display	
FF_EnE.	
- Press to call for EXECUTION display.	$\underbrace{\text { Stutan) }}_{\text {SET }}$

(5) Initialization of parameter

Initialize the parameter.

Caution … Parameter cannot be initialized when one of the following error occurs: Err11.0 "Under voltage protection of control power supply", EEPROM related errors (Err36.0, Err36.1, Err36.2, Err37.0, Err37.1 and Err37.2) - initialization will result in "Error" display.

- After initialization of parameter finishes, return to SELECTION display, referring to structure of each mode (P.2-88).
(6) Release of front panel lock

Release the front panel lock setting.

SELECTION display	
FF_ Mi	
- Press S to call for EXECUTION display	(SET buton)

- After release of front panel lock finishes, return to SELECTION display, referring to structure of each mode (P.2-88).
\qquad

3. Connection

1. Outline of mode
Position Control Mode 3-2
Velocity Control Mode 3-6
Torque Control Mode 3-9
Full-closed Control Mode 3-12
2. Control Block DiagramPosition Control Mode3-14
Velocity Control Mode 3-15
Torque Control Mode 3-16
Full-closed Control Mode 3-17
3. Wiring Diagram to the connector, X4Example of control mode specific wiring3-18
Connecting Example to Host Controller 3-20
4. Inputs and outputs on connector X4
Interface Circuit (Input) 3-30
Interface Circuit (Output) 3-32
Input Signal and Pin No. 3-34
Output Signal and Pin No. 3-45
5. IF Monitor Settings
How to Assign Various I/O Functions to the I/F 3-50

Position Control Mode

Outline

You can perform position control based on the positional command (pulse train) from the host controller.
This section describes the fundamental setup to be used for the position control.

Function

(1) Process of command pulse input

The positional commands of the following 3 types (pulse train) are available.

- 2-phase pulse
- Positive direction pulse/negative direction pulse
- Pulse train + sign

Set the pulse configuration and pulse counting method based on the specification and configuration of installation of the host controller.
The input terminals can accommodate the following 2 systems.

- Input 1 "PULSH1, PULSH2, SIGNH1, SIGNH2" line receiver input (4 Mpps)
- Input 2 "PULS1, PULS2, SIGN1, SIGN2" photocoupler input (500 kpps)

Caution \cdots ? ? frequency.

- Relevant parameters

Parameter No.	Title	Range	Function
Pr0.05	Selection of command pulse input	0 to 1	You can select either the photo-coupler input or the exclusive input for line driver as the command pulse input.
Pr0.06	Command pulse rotational direction setup	0 to 1	Sets the counting direction when command pulse is input.
Pr0.07	Command pulse input mode setup	0 to 3	Sets the counting method when command pulse is input.

Note \cdots For details of these parameters, refer to P.4-6 and 7 "Details of parameter".

(2) Electronic gear function

This function multiplies the input pulse command from the host controller by the predetermined dividing or multiplying factor and applies the result to the position control section as the positional command. By using this function, desired motor rotations or movement distance per unit input command pulse can be set; or the command pulse frequency can be increased if the desired motor speed cannot be obtained due to limited pulse output capacity of the host controller.

- Relevant parameters

Parameter No.	Title	Range	Function
Pr0.08	Command pulse counts per one motor revolution	0 to 1048576	Set the command pulses that causes single turn of the motor shaft.
Pr0.09	1st numerator of electronic gear	0 to 1073741824	Set the numerator of division/multiplication operation made according to the command pulse input.
Pr0.10	Denominator of electronic gear	1073741824	Set the Denominator of division/multiplication operation made according to the command pulse input.

Note \cdots For details of these parameters, refer to P.4-8 "Details of parameter".

(3) Positional command filtering function

To make the positional command divided or multiplied by the electronic gear smooth, set the command filter.

- Relevant parameters

Parameter No.	Title	Range	Unit	Function
Pr2.22	Positional command smoothing filter	0 to 10000	0.1 ms	Set up the time constant of the 1st delay filter in response to the positional command.
Pr2.23	Positional command FIR filter	0 to 10000	0.1 ms	Set up the time constant of the 1st delay filter in response to the positional command.

Note . For details of these parameters, refer to P.4-23 and 24 "Details of parameter".

(4) Pulse regeneration function

The information on the amount of movement can be sent to the host controller in the form of A- and B-phase pulses from the servo driver. When the output source is the encoder, Z-phase signal is output once per motor revolution; or if the feedback scale, the signal is output at absolute zero position. The output resolution, B-phase logic and output source (encoder or external scale) can be set with parameters.

- Relevant parameters

Parameter No.	Title	Range	Unit	Function
Pr0.11	Output pulse counts per one motor revolution	1 to 262144	P/r	You can set up the output pulse counts per one motor revolution for each OA and OB with the Pr0.11 setup.
Pr0.12	Reversal of pulse output logic	0 to 3	-	You can set up the B-phase logic and the output source of the pulse output. With this parameter, you can reverse the phase relation between the A-phase pulse and the B-phase pulse by reversing the B-phase logic.
Pr5.03	Denominator of pulse output division	0 to 262144	-	For application where the number of pulses per revolution is not an integer, this parameter can be set to a value other than 0, and the dividing ratio can be set by setting numerator of division to Pr0.11 and denominator of division to Pr5.03.
Pr5.33	Pulse regenerative output limit setup	0 to 1	-	Enable/disable detection of Err28.0 Pulse regenerative limit protection.
Pr6.20	Z-phase setup of external scale	0 to 400	$\mu \mathrm{s}$	Set up the Z phase regenerative width of feedback scale in unit of time.
Pr6.21	Serial absolute external scale Z phase setup	268435456	pulse	Full-closed control using serial absolute feedback scale. When outputting pulses by using the feedback scale as the source of the output, set the Z phase output interval in units of A phase output pulses of the feedback scale (before multiplied by 4).
Pr6.22	A, B phase external scale pulse output method selection	0 to 1	-	Select the pulse regeneration method of A, B and Z parallel feedback scale.

Note

For details of these parameters, refer to P.4-9, 10, 11, 43, 51 and 55 "Details of parameter".

(5) Deviation counter clear function

The deviation counter clear input (CL) clears the counts of positional deviation counter at the position control to 0 .

- Relevant parameters

Parameter No.	Title	Range	Function
$\operatorname{Pr5.17}$	Counter clear input mode	0 to 4	You can set up the clearing conditions of the counter clear input signal.

Note
For details of these parameters, refer to P.4-47 "Details of parameter".

(6) Positioning complete output (INP) function

The completion of positioning can be verified by the positioning complete output (INP). When the absolute value of the positional deviation counter at the position control is equal to or below the positioning complete range by the parameter, the output is ON . Presence and absence of positional command can be specified as one of judgment conditions.

- Relevant parameters

Parameter No.	Title	Range	Unit	Function
Pr4.31	Positioning complete (In-position) range	0 to 262144	Command unit	Set up the timing of positional deviation at which the positioning complete signal (INP1) is output.
Pr4.32	Positioning complete (In-position) output setup	0 to 3	-	Select the condition to output the positioning complete signal (INP1).
Pr4.33	INP hold time	0 to 30000	1 ms	Set up the hold time when Pr4.32 Positioning complete output setup $=3$.
Pr4.42	2nd Positioning complete (In-position) range	0 to 262144	Command unit	Set up the timing of positional deviation at which the positioning complete signal (INP2) is output.

Note For details of these parameters, refer to P.4-39 and 42 "Details of parameter".

(7) Command pulse inhibition (INH) function

The command pulse input counting process can be forcibly terminated by using the command pulse inhibit input signal (INH). When INH input is ON, the servo driver ignores the command pulse, disabling pulse counting function.
The default setting of this inhibition function is disable. To use INH function, change the setting of Pr5. 18 "Invalidation of command pulse prohibition input".

- Relevant parameters

Parameter No.	Title	Range	Function
Pr5.18	Invalidation of command pulse inhibit input	0 to 1	Select command pulse inhibit input enable/disable.
Pr5.19	Command pulse inhibit input reading setup	0 to 4	Select command pulse inhibit input enable/disable signal reading period. When the status of several signals read during the predetermined reading period are same, update the signal status.

For details of these parameters, refer to P.4-47 "Details of parameter".

Outline

You can control the speed according to the analog speed command from the host controller or the speed command set in the servo driver.

Note Only for position control type is not provided with analog input.

Function

(1) Velocity control by analog speed command

The analog speed command input voltage is converted to equivalent digital speed command. You can set the filter to eliminate noise or adjust the offset.

- Relevant parameters

$\begin{gathered} \hline \begin{array}{c} \text { Parameter } \\ \text { No. } \end{array} \\ \hline \end{gathered}$	Title	Range	Unit	Function
Pr3.00	Speed setup, Internal/ External switching	0 to 3	-	This driver is equipped with internal speed setup function so that you can control the speed with contact inputs only.
Pr3.01	Speed command rotational direction selection	0 to 1	-	Select the Positive/Negative direction specifying method.
Pr3.02	Input gain of speed command	10 to 2000	(r/min) /V	Based on the voltage applied to the analog speed command (SPR), set up the conversion gain to motor command speed.
Pr3.03	Reversal of speed command input	0 to 1	-	Specify the polarity of the voltage applied to the analog speed command (SPR).
Pr4.22	Analog input 1 (Al1) offset setup	$\begin{gathered} \hline-5578 \text { to } \\ 5578 \end{gathered}$	0.359 mV	Set up the offset correction value applied to the voltage fed to the analog input 1.
Pr4.23	Analog input 1 (AI1) filter	0 to 6400	0.01 ms	Set up the time constant of 1st delay filter that determines the lag time behind the voltage applied to the analog input 1.

Note \cdots For details of these parameters, refer to P.4-25, 26 and 38 "Details of parameter". Only for position control type is not provided with analog input.

(2) Velocity control by internal speed command

You can control the speed by using the internal speed command set to the parameter. By using the internal speed command selections 1, 2, 3 (INTSPD1, 2, 3), you can select best appropriate one among up to 8 internal speed command settings. Default setting uses the analog speed command. To use the internal speed command, select it through Pr3.00 "Internal/external speed setup".

- Relevant parameters

Parameter No.	Title	Range	Unit	Function
Pr3.00	Speed setup, Internal/ External switching	0 to 3	-	This driver is equipped with internal speed setup function so that you can control the speed with contact inputs only.
Pr3.01	Speed command rotational direction selection	0 to 1		-
Pr3.04	1st speed of speed setup		Select the Positive/Negative direction specifying method.	
Pr3.05	2nd speed of speed setup			

Note \cdots For details of these parameters, refer to P.4-25, 26 and 27 "Details of parameter".

(3) Speed zero clamp (ZEROSPD) function

You can forcibly set the speed command to 0 by using the speed zero clamp input.

- Relevant parameters

Parameter No.	Title	Range	Unit	Function
Pr3.15	Speed zero-clamp function selection	0 to 3	-	You can set up the function of the speed zero clamp input.
Pr3.16	Speed zero clamp level	0 to 1	r/min	elect the timing at which the position control is activated as the Pr3.15 Speed zero-clamp function selection is set to 2 or 3.

Note For details of these parameters, refer to P.4-28 "Details of parameter".

(4) Attained speed output (AT-SPEED)

The signal AT-SPEED is output as the motor reaches the speed set to Pr4.36 "Attained speed".

- Relevant parameters

Parameter No.	Title	Range	Unit	Function
Pr4.36	At-speed (Speed arrival)	10 to 20000	r/min	Set the detection timing of the speed arrival output (AT-SPEED).

Note
For details of these parameters, refer to P.4-41 "Details of parameter".

(5) Speed coincidence output (V-COIN)

This signal is output when the motor speed is equal to the speed specified by the speed command. The motor speed is judged to be coincident with the specified speed when the difference from the speed command before/after acceleration/deceleration is within the range specified by Pr4.35 "Speed coincident range" .

- Relevant parameters

Parameter No.	Title	Range	Unit	Function
Pr4.35	Speed coincidence range	10 to 20000	$\mathrm{r} / \mathrm{min}$	Set the speed coincidence (V-COIN) output detection timing.

Note \because For details of these parameters, refer to P.4-40 "Details of parameter".

(6) Speed command acceleration/deceleration setting function

This function controls the speed by adding acceleration or deceleration instruction in the driver to the input speed command.
Using this function, you can use the soft start when inputting stepwise speed command or when using internal speed setup. You can also use S shaped acceleration/deceleration function to minimize shock due to change in speed.

- Relevant parameters

Parameter No.	Title	Range	Unit	Function
Pr3.12	Acceleration time setup	0 to 10000	$\mathrm{ms} /$ $(1000 \mathrm{r} / \mathrm{min})$	Set up acceleration processing time in response to the speed command input.
Pr3.13	Deceleration time setup	0 to 10000	$\mathrm{ms} /$ $(1000 \mathrm{r} / \mathrm{min})$	Set up deceleration processing time in response to the speed command input.
Pr3.14	Sigmoid acceleration/ deceleration time setup	0 to 1000	ms	Set S-curve time for acceleration/ deceleration process when the speed command is applied.

When the position loop is external to the driver, do not use the acceleration/ deceleration time setting. Set these values to 0 .

Note

For details of these parameters, refer to P.4-27 and 28 "Details of parameter".

1. Outline of mode
 Torque Control Mode

Outline

The torque control is performed according to the torque command specified in the form of analog voltage. For controlling the torque, the speed limit input is required in addition to the torque command to maintain the motor speed within the speed limit.
With the A5 series, 3 torque control modes are available, each requires different torque command and speed limit as shown in the table below.

- Pr3.17 (Selection of torque command)

Setup value		Torque command input	Velocity limit input
0	Selection of torque command 1	Analog input 1 ${ }^{* 1}$ (Al1, 16-bit resolution)	Parameter value (Pr3.21)
1	Selection of torque command 2	Analog input 2 (Al2, 12-bit resolution)	Analog input 1 (Al1, 16-bit resolution)
2	Selection of torque command 3	Analog input 1 ${ }^{* 1}$ (Al1, 16-bit resolution)	Parameter value (Pr3.21, Pr3.22)

*1 For Pro.01 Control mode setup $=5$ (velocity/torque control), the torque command input is the analog input 2 (AI2, 12-bit resolution).
Note ... For details of these parameters, refer to P.4-29 "Details of parameter".
<Selection of torque command 1, 3>

<Selection of torque command2>

Note \cdots Only for position control type is not provided with analog input.
Related page $\cdots:$ • P.3-16 "Control Block Diagram" • P.3-19 "Wiring Diagram to the connector, X4"

(1) Process of analog torque command input

This process converts the analog torque command input (voltage) to the equivalent digital torque command having the same effect. You can set the filter or adjust the offset to eliminate noise.

- Relevant parameters <Selection of torque command 1,3>

Parameter No.	Title	Range	Unit	Function
Pr3.18	Torque command direction selection	0 to 1	-	Select the direction positive/negative direction of torque command.
Pr3.19	Input gain of torque command	10 to 100	0.1 V $/ 100 \%$	Based on the voltage (V) applied to the analog torque command (TRQ R), set up the conversion gain to torque command (\%).
Pr3.20	Input reversal of torque command	0 to 1	-	Set up the polarity of the voltage applied to the analog torque command (TRQR).
Pr4.22	Analog input 1 (Al1) offset setup	-5578 to 5578	$0.359 \mathrm{mV} V$	Set up the offset correction value applied to the voltage fed to the analog input 1.
Pr4.23	Analog input 1 (Al1) filter	0 to 6400	0.01 ms	Set up the time constant of 1st delay filter that determines the lag time behind the voltage applied to the analog input 1.

- Relevant parameters <Selection of torque command 2>

Parameter No.	Title	Range	Unit	Function
Pr3.18	Torque command direction selection	0 to 1	-	Select the direction positive/negative direction of torque command.
Pr3.19	Input gain of torque command	10 to 100	0.1 V $/ 100 \%$	Based on the voltage (V) applied to the analog torque command (TRQ R), set up the conversion gain to torque command (\%).
Pr3.20	Input reversal of torque command	0 to 1	-	Set up the polarity of the voltage applied to the analog torque command (TRQR).
Pr4.25	Analog input 2 (Al2) offset setup	-342 to 342	5.86 mV	Set up the offset correction value applied to the voltage fed to the analog input 2.
Pr4.26	Analog input 2 (AI2) filter	0 to 6400	0.01 ms	Set up the time constant of 1st delay filter that determines the lag time behind the voltage applied to the analog input 2.

Note \cdots For details of these parameters, refer to P.4-29 and 38 "Details of parameter".

(2) Speed limit function

The speed limit is one of protective functions used during torque control.
This function regulates the motor speed so that it does not exceed the speed limit while the torque is controlled.

Caution \cdots While the speed limit is used to control the motor, the torque command applied to the motor is not directly proportional to the analog torque command. Torque command should have the following result: the motor speed is equal to the speed limit.

- Relevant parameters <Selection of torque command 1, 3>

Parameter No.	Title	Range	Unit	Function
Pr3.21	Speed limit value 1	0 to 20000	r/min	Set up the speed limit used for torque controlling.
Pr3.22	Speed limit value 2	0 to 20000	$\mathrm{r} / \mathrm{min}$	
Pr3.15	Speed zero-clamp function selection	0 to 3	-	You can set up the function of the speed zero clamp input.

- Relevant parameters <Selection of torque command 2>

Parameter No.	Title	Range	Unit	Function
Pr3.02	Input gain of speed command	10 to 2000	(r/min) N	Based on the voltage applied to the analog speed command (SPR), set up the conversion gain to motor command speed.
Pr4.22	Analog input 1 (Al1) offset setup	-5578 to 5578	0.359 mV	Set up the offset correction value applied to the voltage fed to the analog input 1.
Pr4.23	Analog input 1 (Al1) filter	0 to 6400	0.01 ms	Set up the time constant of 1st delay filter that determines the lag time behind the voltage applied to the analog input 1.
Pr3.15	Speed zero-clamp function selection	0 to 3	-	You can set up the function of the speed zero clamp input.

Note \cdots For details of these parameters, refer to P.4-26, 28, 30 and 38 "Details of parameter".

Outline

In this full-closed control, you can make a position control by using a external scale mounted externally which detects the position directly and feeds it back. With this control, you can control without being affected by the positional variation due to the ball screw error or temperature and you can expect to achieve a very high precision positioning in sub-micron order.

We recommend the external scale division ratio of $\frac{1}{40} \leq$ External scale division ratio ≤ 160

Cautions on Full-Closed Control

(1) Enter the command pulses making the external scale as a reference.

If the command pulses do not match to the external scale pulses, use the command division/ multiplication function (Pr0.09 to Pr0.10) and setup so that the command pulses after division/ multiplication is based on the external scale reference.
(2) The A5 series supports the external scale of A- and B-phase output type and serial communication type. Initialize the parameters according to the following procedures and write to EEPROM and turn on power.
(3) When using a scale of A- and B-phase output type, correctly connect it so that the rotating direction of the motor (CW/CCW) and A-phase and B-phase of the external scale have the following relationship.

<How to make an initial setup of parameters related to external scale >

1) Turn on the power after checking the wiring.
2) Check the values (initial) feedback pulse sum and external scale feedback pulse sum with the front panel.
3) Move the work and check the travel from the initial values of the above 2).
4) If the travel of the feedback pulse sum and the external scale feedback pulse sum are reversed in positive and negative, set up the reversal of external scale direction (Pr3.26) to 1.
5) Set up the external scale division ratio (Pr3.24, Pr3.25) using the formula below,

External scale division ratio $=\frac{\text { Total variation of feedback pulse sum }}{\text { Total variation of external scale feedback pulse sum }}=\frac{\operatorname{Pr3.24}}{\text { Pr3.25 }}$

* If the design value of the external scale division ratio is obtained, set up this value.

[^25]6) Set up appropriate value of hybrid deviation excess (Pr3.28) in command unit, in order to avoid the damage to the machine.

* A5-series driver calculates the difference between the encoder position and the external scale position as hybrid deviation, and is used to prevent the machine runaway or damage in case of the external scale breakdown or when the motor and the load is disconnected. If the hybrid deviation excess range is too wide, detection of the breakdown or the disconnection will be delayed and error detection effect will be lost. If this is too narrow, it may detect the normal distortion between the motor and the machine under normal operation as an error.
* When the external scale division ration is not correct, hybrid deviation excess error (Err25.0) may occur especially when the work travels long distance, even though the external scale and the motor position matches.
In this case, widen the hybrid deviation excess range by matching the external scale division ratio to the closest value.

Function

(1) Selection of external scale type

Select the type of external scale to be used.

- Relevant parameters

Parameter No.	Title	Range	Function
Pr3.23	External scale selection	0 to 2	Select the type of external scale.
Pr3.26	Reversal of direction of external scale	0 to 1	Reverse the direction of external scale, feedback counter.

Note \cdots For details of these parameters, refer to P.4-30 and 31 "Details of parameter".
(2) Setup of external scale division ratio

Set up the division ratio of encoder resolution and external scale resolution.

- Relevant parameters

Parameter No.	Title	Range	Function
Pr3.24	Numerator of external scale division	0 to 2^{20}	Set up the numerator of the external scale dividing setup.
Pr3.25	Denominator of external scale division	1 to 2^{20}	Set up the Denominator of the external scale dividing setup.

Note For details of these parameters, refer to P.4-31 "Details of parameter".
(3) Setup of hybrid excessive deviation

This function detects the positional difference between the motor (encoder) and load (external scale) and enables the hybrid excessive deviation protection if the difference exceeds Pr3. 28 "Hybrid excessive deviation setup".
Hybrid excessive deviation is mainly caused by feedback scale error, wrong connection and loose connection between the motor and load.

- Relevant parameters

Parameter No.	Title	Range	Function
Pr3.28	Hybrid deviation excess setup	1 to 2^{27}	You can setup the permissible gap (hybrid deviation) between the present motor position and the present external scale position.
Pr3.29	Hybrid deviation clear setup	0 to 100	As the motor turns the number of revolutions set by this parameter, the hybrid deviation is cleared to 0.

Note \cdots For details of these parameters, refer to P.4-32 "Details of parameter".

2. Control Block Diagram

Position Control Mode

3
 Connection

 2. Control Block Diagram

 2. Control Block Diagram
 Velocity Control Mode

Note \cdots Only for position control type is not provided with analog input.
Related page ...: - P.3-18 "Wiring example of velocity control mode"

2. Control Block Diagram
 Torque Control Mode

Note \cdots Only for position control type is not provided with analog input.
Related page $\cdots:$ - P.3-19 "Wiring example of torque control mode"

2. Control Block Diagram
 Full-closed Control Mode

Note \cdots Only for position control type is not provided with analog input.
Related page ...: - P.3-19 "Wiring example of full-close control mode"

Connection

Example of control mode specific wiring

Wiring Example of Position Control Mode

Wiring Example of Velocity Control Mode

[^26]
Wiring Example of Torque Control Mode

- The functions of the following pin can be changed using parameters. (Refer to P.4-33) Input(Torque): 8, 9, 26, 27, 28, 29, 30, 31, 32, 33 Output: 10-11, 12, 34-35, 36-37, 38-39, 40 Input(Full-closed): 8, 9, 26, 27, 28, 29, 31, 32 Output: 10-11, 12, 34-35, 36-37, 38-39, 40
* Pins in the figure above represent default parameter values.
- Only for position control type is not provided with analog input.
- Only for position control type is not provided with connector X5.

Caution \cdots •With position control only type, do not connect analog input on pins 14, 16 and 18 to SG of pin 15.

3. Wiring Diagram to the connector, X4
 Connecting Example to Host Controller

Connection between MINAS A5 and FP2-PP22 AFP2434 (Panasonic Electric Works)

Note I represents twisted pair wire.
Related page...). - P.3-30 "Inputs and outputs on connector X4"

Connection between MINAS A5 and FPG-PP12 AFPG432 (Panasonic Electric Works)

[^27]Connection between MINAS A5 and FP2-PP22 AFP2434 (Panasonic Electric Works)

Note \cdots represents twisted pair wire.
Related page $\cdots:$ - P.3-30 "Inputs and outputs on connector X4"

Connection between MINAS A5 and FPG-C32T (Panasonic Electric Works)

PLC
FPG-C32T
(Panasonic Electric Works)

Note I represents twisted pair wire.
Related page....? • P.3-30 "Inputs and outputs on connector X4"

Connection between MINAS A5 and F3YP14-ON/F3YP18-ON (Yokogawa Electric Corp.)

Note I represents twisted pair wire.
Related page $\cdots \cdots$ - P.3-30 "Inputs and outputs on connector X4"

Connection between MINAS A5 and F3NC32-ON/F3NC34-ON (Yokogawa Electric Corp.)

Note I represents twisted pair wire.
Related page ...:- P.3-30 "Inputs and outputs on connector X4"

Connection between MINAS A5 and CJ1 W-NC113 (Omron Corp.)

CJ1W-NC113 (Omron Corp.)

Driver

A5-series

Note I represents twisted pair wire.
Related page $\cdots:$ - P.3-30 "Inputs and outputs on connector X4"

Connection between MINAS A5 and CJ1W-NC133 (Omron Corp.)

Note \cdots represents twisted pair wire.
Related page ... \cdot • P.3-30 "Inputs and outputs on connector X4"

Connection between MINAS A5 and QD75D1 (Mitsubishi Electric Corp.)

Note I represents twisted pair wire.
Related page $\cdots:$ - P.3-30 "Inputs and outputs on connector X4"

Connection between MINAS A5 and KV-5000/3000 (keyence Corp.)

PLC
KV-5000/3000 (keyence Corp.)

4. Inputs and outputs on connector X4 Interface Circuit (Input)

Input Circuit

SI Connection to sequence input signals | $\begin{array}{c}\text { Related } \\ \text { control mode }\end{array}$ | P | \mathbf{S} | T | F |
| :---: | :---: | :---: | :---: | :---: |

- Connect to contacts of switches and relays, or open collector output transistors.
-When you use contact inputs, use the switches and relays for micro current to avoid contact failure.
- Make the lower limit voltage of the power supply (12 to 24 V) as 11.4 V or more in order to secure the primary current for photo-couplers.

- 10 systems: SI1 to SI10. For assign and function, refer to P.3-37 to P.3-42.

Related page $\cdots \div$ P. 3-50
(1) Line driver I/F (Permissible max. input frequency of command pulse input signal.: 500 kpps)

- This signal transmission method has better noise immunity.

We recommend this to secure the signal transmission.
(2) Open collector I/F (Permissible max. input frequency of command pulse input signal.: 200kpps)

- The method which uses an external control signal power supply (VDC)
- Current regulating resistor (R) corresponding to $V_{D C}$ is required in this case.

VDC	Specifications
12 V	$1 \mathrm{k} \Omega 1 / 2 \mathrm{~W}$
24 V	$2 \mathrm{k} \Omega 1 / 2 \mathrm{~W}$

- Connect the specified resister as below.
- (R) should be placed close to the driver for effective noise reduction.

$$
\frac{\mathrm{VDC}-1.5}{\mathrm{R}+220} \doteqdot 10 \mathrm{~mA}
$$

(3) Open collector I/F (Permissible max. input frequency of command pulse input signal.: 200kpps)

- Connecting diagram when a current regulating resistor is not used with 24 V power supply.

- 1 system: Pl1. For function, refer to P.3-35, P.3-36.

P12

Connection to sequence input signals

(Pulse train interface exclusive to line driver)

Line driver I/F (Permissible max. input frequency of command pulse input signal.: 4Mpps)

- This signal transmission method has better noise immunity.

We recommend this to secure the signal transmission when line driver I/F is used.

I represents twisted pair.

- 1 system: PI2. For function, refer to P.3-35, P.3-36.

Al Analog command input

- It goes through 3 systems, Al1 to AI3.
- Max. permissible input voltage to each input is $\pm 10 \mathrm{~V}$.

For input impedance of each input, refer to the right Fig.

- When you compose a simple command circuit using variable resistor(VR) and register R, connect as the right Fig. shows. When the variable range of each input is made as -10 V to +10 V , use VR with 2 kW , B-characteristics, $1 / 2 \mathrm{~W}$ or larger, R with $200 \mathrm{~W}, 1 / 2 \mathrm{~W}$ or larger.
- A/D converter resolution of each command input is as follows.
(1)ADC1 : 16 bit (Al1)
(2)ADC2 : 12 bit (Al2, Al3)

- For function, refer to P.3-43, P.3-44.

I represents twisted pair.

Note \ldots Only for position control type is not provided with analog input.

Output Circuit

SO	Sequence output circuit	Related control mode	\mathbf{P}	\mathbf{S}	\mathbf{T}

- The output circuit is composed of open collector transistor outputs in the Darlington connection, and connect to relays or photo-couplers.
-There exists collector to emitter voltage, V_{CE} (SAT) of approx. 1 V at transistor-ON, due to the Darlington connection of the output or. Note that normal TTL IC cannot be directly connected since it does not meet VIL.
- There are two types of output, one (2 systems of SO5, SO6) which emitter side of the output transistor is independent and is connectable individually, and the one (4 systems of SI1 to SI 4) which is common to - side of the control power supply (COM-).
- If a recommended primary current value of the photo-coupler is 10 mA , decide the resistor value using the formula of the below figure.
- When accepting the output signal through a logic circuit, e.g. gate, influence from noises should be prevented.
For the recommended primary current value, refer to the data sheet of the equipment and photo-coupler to be used.

Note - For function, refer to P.3-45 to P.3-48.
Related page …: P.3-52

P01

Line driver (Differential output) output Related
control mode

P	S	T	F

- Feeds out the divided encoder outputs (A, B and Z-phase) in differential through each line driver.
- At the host side, receive these in line receiver. Install a terminal resistor (approx. 330Ω) (right figure (1)) between line receiver inputs without fail.
- These outputs are not insulated.

- For function, refer to P.3-48.

I represents twisted pair.

PO2	Open collector output	Related control mode	P	S	T

- Feeds out the Z-phase signal among the encoder signals in open collector. This output is not insulated.
- Receive this output with high-speed photo couplers at the host side, since the pulse width of the Z-phase signal is narrow.

- For function, refer to P.3-48.

AO	Analog monitor output	Related control mode	\mathbf{P}	\mathbf{S}	\mathbf{T}

- There are two outputs, the speed monitor signal output (SP) and the torque monitor signal output (IM)
- Output signal width is $\pm 10 \mathrm{~V}$.
- The output impedance is $1 \mathrm{k} \Omega$. Pay an attention to the input impedance of the measuring instrument or the external circuit to be connected.

<Resolution>

(1) Speed monitor output (SP)

With a setup of $6 \mathrm{~V} / 3000 \mathrm{r} / \mathrm{min}$, the resolution converted to speed is $8 \mathrm{r} / \mathrm{min} / 16 \mathrm{mV}$.
(2) Torque monitor output (IM)

With a relation of $3 \mathrm{~V} /$ rated torque (100%), the resolution converted to torque is $0.4 \% / 12 \mathrm{mV}$.

- For function, refer to P.3-49.

3
 Connection
 4. Inputs and outputs on connector X4
 Input Signal and Pin No.

Input Signals (common) and Their Functions

Pin	7	Title of signal	Power supply for control signal (+)	Related control mode	P	S	T	F
No.		Symbol	COM+	I/F circuit				
- Connect + of the external DC power supply (12 to 24 V). - Use the power supply voltage of $12 \mathrm{~V} \pm 5 \%-24 \mathrm{~V} \pm 5 \%$								

Input Signals (Pulse Train) and Their Functions

You can select appropriate interface out of two kinds, depending on the command pulse specifications.

- Pulse train interface exclusive for line driver

Pin No.	$\begin{aligned} & 44 \\ & 45 \end{aligned}$	Title of signal	Command pulse input 1	Related control mode	P	S	T	F
		Symbol	Pin No.44: PULSH1 Pin No.45: PULSH2	I/F circuit	PI2	3-3	page	
$\begin{array}{\|l} \text { Pin } \\ \text { No. } \end{array}$	$\begin{aligned} & 46 \\ & 47 \end{aligned}$	Title of signal	Command pulse sign input 1	Related control mode	P	S	T	F
		Symbol	Pin No.46: SIGNH1 Pin No.47: SIGNH2	I/F circuit	PI2		page	

- Input terminal for position command pulse. You can select by setting up Pr0.05 (Selection of command pulse input) to 1 .
- This input becomes invalid at such control mode as velocity control or torque control, where no position command is required.
- Permissible max. input frequency is 4 Mpps .
- You can select up to 6 command pulse input formats with Pro. 06 (Setup of command pulse rotational direction) and Pro. 07 (Setup of command pulse input mode).
For details, refer to the table next page, "Command pulse input format".

- Pulse train interface (supports both line driver and open collector)

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	1	Title of signal	Command pulse input 2	Related control mode	P	S	T	F
	3 4	Symbol	Pin No.1: OPC1 Pin No.3: PULS1 Pin No.4: PULS2	I/F circuit	PI1 3-30 page			
	2	Title of signal	Command pulse sign input 2	Related control mode	P	S	T	F
$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	5	Symbol	Pin No.2: OPC2 Pin No.5: SIGN1 Pin No.6: SIGN2	I/F circuit		3-3		

- Input terminal for the position command. You can select by setting up Pr0.05 (Selection of command pulse input) to 0 .
- This input becomes invalid at such control mode as the velocity control or torque control, where no position command is required.
- Permissible max. input frequency is 500 kpps at line driver input and 200kpps at open collector input.
- You can select up to 6 command pulse input formats with Pro. 06 (Setup of command pulse rotational direction) and Pro. 07 (Setup of command pulse input mode).
For details, refer to the table next page, "Command pulse input format".

[^28]Input Signal and Pin No.

- Input format command pulse

Pro.06 setup value Command pulse rotational direction setup	$\left\|\begin{array}{c} \text { Pr0.07 setup value } \\ \text { Command pulse } \\ \text { input mode } \\ \text { setup } \end{array}\right\|$	Command pulse format	Signal title	Positive direction command	Negative direction command
0	0 or 2	90° phase difference 2-phase pulse (A + B-phase)	$\begin{aligned} & \text { PULS } \\ & \text { SIGN } \end{aligned}$	B-phase advances to A by 90°.	B-phase delays from A by 90°
	1	Positive direction pulse train Negative direction pulse train	$\begin{aligned} & \text { PULS } \\ & \text { SIGN } \end{aligned}$		
	3	pulse train Signal	$\begin{aligned} & \text { PULS } \\ & \text { SIGN } \end{aligned}$		
1	0 or 2	90° phase difference 2-phase pulse (A + B-phase)	$\begin{aligned} & \text { PULS } \\ & \text { SIGN } \end{aligned}$	B-phase delays from A by 90°.	B-phase advances to A by 90°
	1		$\begin{aligned} & \text { PULS } \\ & \text { SIGN } \end{aligned}$	$\varlimsup_{\mathrm{t} 2} \underbrace{}_{\mathrm{t} 2} \square \square$	
	3	pulse train Signal	$\begin{aligned} & \text { PULS } \\ & \text { SIGN } \end{aligned}$		

- PULS and SIGN represents the outputs of pulse train in put circuit. Refer to the fig. of P.3-30, "Input Circuit".
- In case of negative direction pulse train + positive direction pulse train and pulse train + sign, pulse train will be cap tured at the rising edge.
- In case of 2-phase pulse, pulse train will be captured at each edge.
- Permissible max. input frequency, and min. necessary time width of command pulse input signal.

Input I/F of PULS/SIGN signal		Permissible max. input frequency	Min. necessary time width ($\mu \mathrm{s}$)						
		t1	t2	t3	t_{4}	t5	t6		
Pulse train interface exclusive to line driver			4Mpps	0.25	0.125	0.125	0.125	0.125	0.125
Pulse train interface	Line driver interface	500kpps	2	1	1	1	1	1	
	Open collector interface	200kpps	5	2.5	2.5	2.5	2.5	2.5	

Control Input

Control signal having the desired function can be applied to any input pin of I/F connector. The logic can be changed.

Default assignment

Function allocatable to control input

| Title of
 signal | Servo-ON input | Related
 control mode | P | S | T | F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Symbol | SRV-ON | Default assignment | $\mathbf{2 9 (S I 6)}$ | $1 /$ F circuit | SI $3-30$ page | |
| | | | | | | |

| Title of
 signal | Positive direction over-travel inhibition input | Related
 control mode | P | S | T | F |
| :---: | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| Symbol | POT | Default assignment | $\mathbf{9}$ (SI2) | $1 /$ F circuit | SI $3-30_{\text {page }}$ | |

- Positive direction over-travel inhibit input.
- The operation with this input turned ON is set up in Pr5.04 "Setup of over-travel inhibit input".
- When using this input, set Pr5.04 "Setup of over-travel inhibit input" to a value other than 1 so that the input is ON when the moving portion of the machine exceeds this signal range toward positive direction.

Title of signal	Negative direction over-travel inhibition input			$\begin{array}{\|c\|} \hline \text { Related } \\ \text { control mode } \\ \hline \end{array}$	P	S	T	F
Symbol	NOT	Default assignment	8 (SI1)	I/F circuit				
	- Negative direction over-travel inhibit input. - The operation with this input turned ON is set up in Pr5.04 "Setup of over-travel inhibit input". - When using this function, set Pr5.04 "Setup of over-travel inhibit input" to a value other than 1 so that the input is ON when the moving portion of the machine exceeds this signal range toward negative direction.							

Title of signal	Deviation counter clear input				Related control mode	P	S	T	F
Symbol	CL		Default assignment	30 (SI7)	I/F circuit	SI 3-30 page			
- Clears the positional deviation counter. - Default setup clears the counter at the rising edge of the clear input, To change the setup, modify it in the Pr5.17 "Counter clear input mode". <Signal width and clear timing>	- Clears the positional deviation counter. - Default setup clears the counter at the rising edge of the clear input, To change the setup, modify it in the Pr5.17 "Counter clear input mode". <Signal width and clear timing>								
	Pr5.17	CL signal width	Deviation clear timing						
	1	500μ s or more	Continually clear the counter while the deviation counter clear input is ON. *1						
	2	1 ms or more							
	3	100μ s or more	Only once clear the counter at OFF to ON edge of the deviation counter clear input signal. *1						
	4	1 ms or more							
	*1 Deviation counter clear input ON/OFF = input photocoupler ON/OFF								
Caution \cdots. This function can be assigned to only SI7. Allocation of this function to any other pin will cause an error.									

[^29]| Title of signal | Alarm clear input | | | Related control mode | P | S | T | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | A-CLR | Default assignment | 31 (SI8) | I/F circuit | | 3-30 | | |
| | - Cle
 - This
 - For and | e alarms. hen in Trouble "P ry Alarm". | otective fun | n", P.2-98 "‘(દ | For details, refer to P.6-2 When in Trouble "Protective function", P.2-98 "(8) Alarm Display" and P.7-25 "Display of Battery Alarm". | | | |

| Title of
 signal | Command pulse inhibition input | Related
 control mode | \mathbf{P} | S | T | F |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Symbol | INH | Default assignment | $\mathbf{3 3} \mathbf{(S I 1 0)}$ | I/F circuit | SI $3-30_{\text {page }}$ | |

- Ignores the positional command pulse.
- When using this feature, set Pr5.18 "Invalidation of command pulse inhibition input" to 0.

Caution...8. This function can be assigned to only SI10. Allocation of this function to any other pin will cause an error.

Title of signal	Control mode switching input			Related control mode	P	S	T	F
Symbol	C-MODE	Default assignment	32 (SI9)	I/F circuit	SI			
- Selects a control mode.								
Caution $\cdots \%$ - This signal is required in all control modes. No setting will cause an error.- Do not input any command 10 ms before and after changing the control modr								

Title of signal	Electronic gear (division/multiplication) switching input 1			Related control mode	P	S	T	F
Symbol	DIV1	Default assignment	28 (SI5)	I/F circuit	SI	3-3		
Title of signal	Electronic gear (division/multiplication) switching input 2			Related control mode	P	S	T	F
Symbol	DIV2	Default assignment	-	I/F circuit	SI 3-30 page			

- Up to 4 numerators can be used for command dividing/multiplying by using DIV1 and DIV2. <DIV1 and DIV2 vs numerator/denominator of selected command dividing/multiplying process>

DIV1	DIV2	Selected command dividing/multiplying process	
		Numerator	Denominator
OFF	OFF	Pr0.09	Pr0.10
ON	OFF	Pr5.00	Pr0.10
OFF	ON	Pr5.01	Pr0.10
ON	ON	Pr5.02	Pr0.10

Title of signal	Damping control switching input 1			Related control mode	P	S	T	F
Symbol	VS-SEL1	Default assignment	26 (SI3)	I/F circuit	SI	,		
Title of signal	Damping control switching input 2			Related control mode	P	S	T	F
Symbol	VS-SEL2	Default assignment	-	I/F circuit	SI 3-30 page			

- Selects applicable frequency for damping control.

Combination of damping control input changeover 1 and 2 (VS-SEL1, VS-SEL2) enables select of max. 4 options.

Note
Also refer to P.4-22 "Pr2.13 [Damping filter switching selection]".

| Title of
 signal | Gain switching input | Related
 control mode | P | S | T | F |
| :---: | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Symbol | GAIN | Default assignment | $\mathbf{2 7}$ (SI4) | $1 / \mathrm{F}$ circuit | SI $3-30$ page | |
| | | | | | | |

| Title of
 signal | Torque limit switching input
 Related
 control mode | | \mathbf{P} | \mathbf{S} | T | F |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Symbol | TL-SEL | Default assignment | - | $1 /$ F circuit 2 | SI $3-30$ page | |

- Select 1st or 2nd torque limit.

Pr5.21	Torque limit switching input (TL-SEL)	Torque limit switching setup (Pr5.23, Pr5.24)	Positive direction Torque limit	Negative direction Torque limit
0			Analog input *1	
1	-	-	Pr0.13	
2	-	-	Pr0. 13	Pr5. 22
3	OFF	Valid	Pr0.13	
	ON		Pr5.22	
4			Analog input *1	
5				
6	OFF	-	Pr0.13	Pr5. 22
	ON		Pr5.25	Pr5. 26

*1 To specify the torque limit value by an analog input, refer to Pr5.21 "Analog torque limit function".

- Setup of rate of change after torque limit switchover

When applying Pr5.21"Torque limit selection" $=3$, changing rate of torque (slope) after selecting new torque limit can be changed.
When changing from the 1 st torque limit to 2 nd torque limit, the changing rate (slope) set at Pr5.23 "Torque limit selection setup 1" is applied; after changing from the 2nd torque limit to 1 st torque limit, the changing rate (slope) set at Pr5.24 "Torque limit selection setup 2 " is applied. The sign of the changing rate is automatically selected by the driver according to the difference in value between the 1 st and 2 nd torque limit.
If Pr5.23 "Torque limit selection setup 1" and Pr5.24 "Torque limit selection setup 2" are set to 0, switchover is instantaneous.

Caution...\%. When the 1st torque limit (Pr0.13) and 2nd torque limit (Pr5.22) are changed from the front panel or through communication, the changing rate setup is ignored and the new torque limit value is immediately and directly applied. That is, changing rate setting is effective only when the selection is made by using the torque limit select input (TL-SEL).

Title of signal	Selection 1 input of internal command speed			$\begin{array}{\|c\|} \hline \text { Related } \\ \text { control mode } \\ \hline \end{array}$	P	S	「	
Symbol	INTSPD1	Default assignment	33 (SI10)	1/F circuit	SI			
Title of signal	Selection 2 input of internal command speed			$\begin{gathered} \text { Related } \\ \text { control mode } \\ \hline \end{gathered}$		S	「	
Symbol	INTSPD2	Default assignment	30 (SI7)	I/F circuit	SI			
Title of signal	Selection 3 input of internal command speed			Related control mode	P	S	T	
Symbol	INTSPD3	Default assignment	28 (SI5)	I/F circuit	SI 3-30 page			

- Select one of 8 internal command speeds.
<Relationship between Pr3.00 "Switching between internal and external speed setup" and internal command speed selection 1-3 and the speed command selected>.

Pr3.00	Selection 1 of internal command speed (INTSPD1)	Selection 2 of internal command speed (INTSPD2)	Selection 3 of internal command speed (INTSPD3)	Selection of speed command
1	OFF	OFF	No effect	1st speed
	ON	OFF		2nd speed
	OFF	ON		3rd speed
	ON	ON		4th speed
2	OFF	OFF	No effect	1st speed
	ON	OFF		2nd speed
	OFF	ON		3rd speed
	ON	ON		Analog speed command
3	The same as Pr3.00=1		OFF	1st to 4th speed
	OFF	OFF	ON	5th speed
	ON	OFF	ON	6 th speed
	OFF	ON	ON	7th speed
	ON	ON	ON	8th speed

Internal command speed switching pattern should be so arranged as shown below that single input signals are selected alternately. If 2 or more input signals are selected simultaneously, unspecified internal command speed may be advertently selected, whose setting value and acceleration/deceleration setting will cause unexpected operation.

Example 1) When Pr3.00=1 or 2

Example 2) When Pr3.00=3

| Title of
 signal | Speed zero clamp input | | Related
 control mode | P | S | T | F |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Symbol | ZEROSPD | Default assignment | $\mathbf{2 6} \mathbf{(S I 3)}$ | $1 / F$ circuit | SI | $3-30$ page | |

- Set the speed command to 0.
- When using, set Pr3.15 "Speed zero clamp function selection" to a value other than 0 .

| Title of
 signal | Speed command sign input | | Related
 control mode | P | S | T | F |
| :---: | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Symbol | VC-SIGN | Default assignment | - | $1 / F$ circuit | SI | $3-30$ page | |

- Specify the sign of speed command input at velocity control.

Refer to P.4-25 "Pr3.01 Speed command rotational direction selection"

Title of signal	Torque command sign input			Related control mode	P	S T
Symbol	TC-SIGN	Default assignment	-	I/F circuit	SI	3-30 page
- Specify the sign of torque command input at torque control.						
	ON	Negative direction				
	OFF	Positive direction				
Refer to P.4-29 "Pr3.18 Torque command direction selection"						

| Title of
 signal | Forced alarm input | Related
 control mode | P | S | T | F |
| :---: | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| Symbol | E-STOP | Default assignment | - | $1 /$ circuit | SI $3-30$ page | |
| | | | | | | |

Title of signal	Inertia ratio switching input			$\begin{gathered} \text { Related } \\ \text { control mode } \\ \hline \end{gathered}$	P	S	T	F
Symbol	J-SEL	Default assignment	-	I/F circuit	SI	3-3		

- Selects 1 st inertia ratio or 2nd inertia ratio according to the inertia ratio select input (J-SEL).

Inertia ratio switching input (J-SEL)	Applicable inertia ratio
OFF	1st Inertia ratio (Pr0.04)
ON	2nd Inertia ratio (Pr6.12)

Refer to P.4-53 "Pr6.10 Function expansion setup"

Note \cdots Only for position control type is not provided with analog input.

Input Signals (Analog Command)

Pin No.	4	Title of signal	Al1 input	Correspondence function
		Al1	SPR, TRQR, SPL	
Pin No.	6	Title of signal	Al2 input	Correspondence function
		Al2	TRQR, P-ATL	
Pin No.	18	Title of signal	Al3 input	Correspondence function
		Al3	N-ATL	

Function allocatable to Input Signals (Analog Command)

*1 When specifying the torque limit value through the parameter, refer to P.4-48 "Torque limit select function"

Title of signal	Speed command input				$\begin{array}{\|c\|} \text { Related } \\ \text { control mode } \\ \hline \end{array}$	P	S	F
Symbol	SPR				I/F circuit	AI 3-31 page		
- Input the speed command in the form of analog voltage. - The table below shows relationship between the combination of Pr3.00 "Switching between internal and external speed setup", Pr3.01 "Speed command direction selection", Pr3.03 "Speed command input inversion", analog speed command (SPR) of I/F connector and speed command sign selection (VC-SIGN) and the motor rotational direction; and the conversion graph of analog speed command input voltage to the speed command.	- Input the speed command in the form of analog voltage. - The table below shows relationship between the combination of Pr3.00 "Switching between internal and external speed setup", Pr3.01 "Speed command direction selection", Pr3.03 "Speed command input inversion", analog speed command (SPR) of I/F connector and speed command sign selection (VC-SIGN) and the motor rotational direction; and the conversion graph of analog speed command input voltage to the speed command.							
	Pr3.00	Pr3.01	Pr3.03	Speed command input (SPR)	Speed command sign selection (VC-SIGN) Motor rotational direction			
			0	+Voltage (0 to 10V)	No effect		Positive direction	
			0	-Voltage (-10 to 0 V)	No effect		Negative direction	
		0		+Voltage (0 to 10V)	No effect		Negative direction	
	0		1	-Voltage (-10 to 0 V)	No effect		Positive direction	
		1	No effect	+Voltage (0 to 10V)	OFF		Positive direction	
				-Voltage (-10 to 0V)				
				+Voltage (0 to 10V)	ON		Negative direction	
				-Voltage (-10 to 0V)				

Title of signal	Speed limit input	Related control mode	P	S	T	F
Symbol	SPL	$1 /$ F circuit	$A I$	A-31 page		

- When setting Pr3.17 "Torque command selection" to 1, input the speed limit value in the form of analog voltage.

Note Only for position control type is not provided with analog input.

Output Signals (Common) and Their Functions

Control output signal of desired function can be assigned to I/F connector. Logic of the output pin cannot be changed.

				Applicable parameter	Default parameter setting (): decimal notation	Default Setup		
						Position/ Fullclosed control Signal	Verocity control Signal	Torque control Signal
Pin	10	Title of signal	SO1 output	Pr4.10	$\begin{gathered} \text { 00030303h } \\ (197379) \end{gathered}$	BRK-OFF	BRK-OFF	BRK-OFF
No.	11	Symbol	Pin No.10: SO1- Pin No.11: SO1+					
Pin No.	$\begin{aligned} & 34 \\ & 35 \end{aligned}$	Title of signal	SO2 output	Pr4.11	$\begin{aligned} & \text { 00020202h } \\ & (131586) \end{aligned}$	S-RDY	S-RDY	S-RDY
		Symbol	Pin No.34: SO2- Pin No.35: SO2+					
Pin No.	$\begin{aligned} & 36 \\ & 37 \end{aligned}$	Title of signal	SO3 output	Pr4.12	$\begin{aligned} & \text { 00010101h } \\ & (65793) \end{aligned}$	ALM	ALM	ALM
		Symbol	Pin No.36: SO3- Pin No.37: SO3+					
Pin No.	$\begin{aligned} & 38 \\ & 39 \end{aligned}$	Title of signal	SO4 output	Pr4.13	$\begin{aligned} & 00050504 \mathrm{~h} \\ & (328964) \end{aligned}$	INP	AT-SPEED	AT-SPEED
		Symbol	Pin No.38: SO4Pin No.39: SO4+					
Pin No.	12	Title of signal	SO5 output	Pr4.14	$\begin{gathered} \text { 00070707h } \\ (460551) \end{gathered}$	ZSP	ZSP	ZSP
		Symbol	SO5					
Pin No.	40	Title of signal	SO6 output	Pr4.15	$\begin{aligned} & \text { 00060606h } \\ & (394758) \end{aligned}$	TLC	TLC	TLC
		Symbol	SO6					
- The function is changed by the setting of parameter. For details, refer to P.4-35. See "Functions assignable to control output" as shown below.								
Note ... [-]: No function assigned								
Related page ...: P.3-52								

Function allocatable to control input

| Title of
 signal | Servo-Alarm output | Related
 control mode | P | S | T | F |
| :---: | :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| Symbol | ALM | Default assignment | $\mathbf{3 6 , 3 7}$ (SO3) | I/F circuit | SO | 3-32 page |

- This signal shows that the driver is in alarm status..
- Output transistor turns ON when the driver is at normal status, and turns OFF at alarm status.

| Title of
 signal | Servo-Ready output | Related
 control mode | P | S | T | F |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Symbol | S-RDY | Default assignment | $\mathbf{3 4 , 3 5 (S O 2)}$ | $1 /$ F circuit | SO | 3-32 page |

- This signal shows that the driver is ready to be activated.
- Output transistor turns ON when both control and main power are ON but not at alarm status.

Title of
signal signal Symbol

External brake release signal
BRK-OFF
Default assignment 10, 11 (SO1)

- Feeds out the timing signal which activates the holding brake of the motor.
- Turns the output transistor ON at the release timing of the holding brake.

Title of signal	Positioning complete			Related control mode	P	S	T	F
Symbol	INP	Default assignment	38, 39 (SO4)	I/F circuit	SO	3-32 page		
Title of signal	Positioning complete 2			$\begin{array}{\|c\|} \hline \text { Related } \\ \text { control mode } \\ \hline \end{array}$	P	S	T	F
Symbol	INP2	Default assignment	-	I/F circuit	SO	3-3	2 page	
- Outputs the positioning complete signal/positioning complete signal 2. - Turns ON the output transistor upon completion of positioning.								

Title of signal	Speed arrival output			Related control mode	P	S	T	F
Symbol	AT-SPPED	Default assignment	38, 39 (SO4)	I/F circuit	SO 3-32 page	3-32 page		
- Outputs thespeed arrival signal. - Turns ON the output transistor upon arrive of speed.								

| Title of
 signal | Torque in-limit signal output | Related
 control mode | P | S | T | F |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Symbol | TLC | Default assignment | $\mathbf{4 0}$ (SO6) | I/F circuit | SO | 3-32 page |
| | | | | | | |
| | • Outputs thetorque in-limit signal. | | | | | |
| | \cdot Turns ON the output transistor upon limit of torque. | | | | | |

Title of signal	Zero-speed detection output signal			Related control mode	P	S	T	F
Symbol	ZSP	Default assignment	12 (SO5)	I/F circuit	SO	3-32 page		
- Outputs the zero-speed detection signal. - Turns ON the output transistor upon detection of Zero-speed.								

Title of signal	Speed coincidence output			Related control mode	P	S	T
Symbol	V-COIN	Default assignment	-	I/F circuit	SO	3	page

- Outputs the speed coincidence signal.
- Turns ON the output transistor upon coincidence of speed.

Title of signal	Alarm output 1			Related control mode	P	S	T	F
Symbol	WARN1	Default assignment	-	I/F circuit	SO	3-3	p	
- Outputs the warning output signal set to Pr4.40 "Warning output select 1". - Turns ON the output transistor upon occurrence of warning condition.								

- Selection of alarm 1 output and 2 output

Alarm No.	Alarm	Content	Pr6.27 *1	Pr4.40/ Pr4.41 *2	Pr6.38 Corresponding bit *3
A0	Overload protection	Load factor is 85\% or more the protection level.	\bigcirc	1	bit7
A1	Over-regeneration alarm	Regenerative load factor is 85% or more the protection level.	\bigcirc	2	bit5
A2	Battery alarm	Battery voltage is 3.2 V or lower.	Fixed at no time limit.	3	bit0
A3	Fan alarm	Fan has stopped for 1 sec.	\bigcirc	4	bit6
A4	Encoder communication alarm	The number of successive encoder communication errors exceeds the specified value.	\bigcirc	5	bit4
A5	Encoder overheat alarm	The encoder detects overheat alarm.	\bigcirc	6	bit3
A6	Oscillation detection alarm	Oscillation or vibration is detected.	\bigcirc	7	bit9
A7	Lifetime detection alarm	The life expectancy of capacity or fan becomes shorter than the specified time.	Fixed at no time limit.	8	bit2
A8	External scale error alarm	The feedback scale detects the alarm.	\bigcirc	9	bit8
A9	External scale communication alarm	The number of successive feedback scale communication errors exceeds the specified value.	\bigcirc	10	bit10

*1 The "circle" means that a time in the range 1 to 10 s or no time limit can be selected through Pr6.27 "Warning latching time". Note that the battery warning and the end of life warning have no time limit.
*2 Select the warning output signal 1 (WARN1) or warning output signal 2 (WARN2) through Pr4.40 "Warning output select 1 " or Pr4.41 "Warning output select 2". When the set value is 0 , all warnings are ORed before being output. Do not set to any value other than those specified in the table above.
*3 A warning detection can be masked by Pr6.38 "Warning mask setup" Corresponding bits are shown in the table. Warning is masked with bit $=1$.
*4 The upper fan on the H-frame driver stops during servo OFF to save energy. This is normal and no fan alarm is displayed.

| Title of
 signal | Positional command ON/OFF output | | Related
 control mode | P | S | T | F |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Symbol | P-CMD | Default assignment | - | $1 / F$ circuit | SO | 3-32 page | |

- Turns on output transistor with positional command applied.

Title of signal	Speed in-limit output			Related control mode	P	S	T	
Symbol	V-LIMIT	Default assignment	-	I/F circuit	S	3		

- Turns on output transistor when the speed is limited by torque controlling function.

Title of signal	Alarm attribute output			Related control mode	P	S	T	F
Symbol	ALM-ATB	Default assignment	-	I/F circuit	SO	3-3	pa	
- Turns on output transistor when an alarm that can be cleared generates.								

Title of signal	Speed command ON/OFF output			$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	P	S T	F
Symbol	V-CMD	Default assignment	-	I/F circuit	SO	3-32 pas	

Output Signals (Pulse Train) and Their Functions

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & 21 \\ & 22 \end{aligned}$	Title of signal	A-phase output	Related control mode	P	S	T	F
		Symbol	Pin No.21: OA+ Pin No.22: OA-	I/F circuit	PO1 3-32 page			
$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & 48 \\ & 49 \end{aligned}$	Title of signal	B-phase output	Related control mode	P	S	T	F
		Symbol	Pin No.48: OB+ Pin No.49: OB-	I/F circuit	PO1 3-32 page			
$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & 23 \\ & 24 \end{aligned}$	Title of signal	Z-phase output	$\begin{array}{c\|} \hline \text { Related } \\ \text { control mode } \\ \hline \end{array}$	P	S	T	F
		Symbol	Pin No.23: OZ+ Pin No.24: OZ-	I/F circuit	PO1 3-32 page			
	- Feeds out the divided encoder signal or feedback scale signal (A, B, Z-phase) in differential. (equivalent to RS422) - Ground for line driver of output circuit is connected to signal ground (GND) and is not insulated. - Max. output frequency is 4 Mpps (after quadrupled)							

Pin	19	Title of signal	Z-phase output	$\begin{gathered} \text { Related } \\ \text { control mode } \\ \hline \end{gathered}$	P	S	T	F
No.		Symbol	CZ	I/F circuit	PO			

- Open collector output of Z-phase signal
- The emitter side of the transistor of the output circuit is connected to the signal ground (GND) and is not insulated.
- When using the CZ signal, isolate it from external noise.
- Note that the logic of Z phase open collector output (CZ) is a reversal of the line driver output (OZ) logic.

Note •When the output source is the encoder

- If the encoder resolution $\times \frac{\operatorname{Pr0.11}}{\operatorname{Pr5.03}}$ is multiple of $4, Z$-phase will be fed out synchronizing with A-phase. In other case, the Z-phase width will be equal to the encoder resolution, and will not synchronize with A-phase because of narrower width than that of A-phase.

when the encoder resolution $\times \frac{\operatorname{Pr0.11}}{\operatorname{Pr} 5.03}$ is not multiple of 4 ,

- In case of the 5-wire, 20-bit incremental encoder, the signal sequence might not follow the above fig. until the first Z-phase is fed out. When you use the pulse output as the control signal, rotate the motor one revolution or more to make sure that the Z-phase is fed out at least once before using.

Output Signals (Analog) and Their Functions

PinNo.	42	Title of signal	Torque monitor output	$\begin{array}{\|c\|} \hline \text { Related } \\ \text { control mode } \\ \hline \end{array}$	P	S	T	F
		Symbol	IM	I/F circuit	AO 3-33 page			
	- Definition of the output signal varies with the output of Pr4.18 (analog monitor 2 type). - The output signal is identical to the analog monitor 2 on the front monitor. - For output setting, refer to P.4-36 "Details of parameter"							

Pin No.	43	Title of signal	Speed monitor output	Related control mode	P	S	T	F
	Symbol	SP	$1 /$ F circuit	AO	$3-33$ page			

- Definition of the output signal varies with the output of Pr4.16 (analog monitor 1 type).
- The output signal is identical to the analog monitor 1 on the front monitor.
- For output setting, refer to P.4-36 "Details of parameter"

Output Signals (Others) and Their Functions

Pin	13, 15	Title of signal	Signal ground	Related control mode	P	S	T	F
No.	17, 25	Symbol	GND	I/F circuit				
- Signal ground								

Pin No.	50	Title of signal	Frame ground	Related control mode	P	S	T	F
Symbol							FG	$1 /$ F circuit

5. IF Monitor Settings

Connection

Control Input Settings

Title of signal	Connector X4 Pin No.	Parameter No.
SI1 input selection	8	Pr4.00
SI2 input selection	9	Pr4.01
SI3 input selection	26	Pr4.02
SI4 input selection	27	Pr4.03
SI5 input selection	28	Pr4.04
SI6 input selection	29	Pr4.05
SI7 input selection	30	Pr4.06
SI8 input selection	31	Pr4.07
SI9 input selection	32	Pr4.08
SI10 input selection	33	Pr4.09

These parameters shall be set by using hexadecimal numbers. Setting shall be made for each control mode as shown in examples below.

00 --一一 $\boldsymbol{\Delta}$ h: Position/Full-closed control
$00--* *--\mathrm{h}$: Speed control
00 ■----h: Torque control
Set an appropriate function number in place of " \square ", " * * " and " $\boldsymbol{\Delta} \boldsymbol{\Delta}$ ". For the function number, see the table on the below.

Title	Symbol	Setup value	
		a-contact	b-contact
Invalid	-	00h	Do not setup.
Positive direction over-travel inhibition input	POT	01h	81h
Negative direction over-travel inhibition input	NOT	02h	82h
Servo-ON input *1	SRV-ON	03h	83h
Alarm clear input	A-CLR	04h	Do not setup.
Control mode switching input *2	C-MODE	05h	85h
Gain switching input	GAIN	06h	86h
Deviation counter clear input *3	CL	07h	Do not setup.
Command pulse inhibition input *4	INH	08h	88h
Torque limit switching input	TL-SEL	09h	89h
Damping control switching input 1	VS-SEL1	OAh	8Ah
Damping control switching input 2	VS-SEL2	OBh	8Bh
Electronic gear switching input 1	DIV1	0Ch	8Ch
Electronic gear switching input 2	DIV2	0Dh	8Dh
Selection 1 input of internal command speed	INTSPD1	0Eh	8Eh
Selection 2 input of internal command speed	INTSPD2	OFh	8Fh
Selection 3 input of internal command speed	INTSPD3	10h	90h
Speed zero clamp input	ZEROSPD	11h	91h
Speed command sign input	VC-SIGN	12h	92h
Torque command sign input	TC-SIGN	13h	93h
Forced alarm input	E-STOP	14h	94h
Inertia ratio switching input	J-SEL	15h	95h

(e.g. 1) Parameter setting

00828282 h (Hexadecimal numbers)

(e.g. 2) Parameter setting

00무는 (Hexadecimal numbers)

Position/ Full-closed Control (Damping control switching input 1; a-contact)
Velocity Control
Torque Control
(Speed zero clamp input; b-contact)
(Speed zero clamp input; b-contact)
Convert to a decimal number
$\square \longleftarrow$ Enter this value to the relevant parameter.

The front panel display is in decimal (six digits).
For setting functions and parameters, hexadecimal and decimal numbers should be used respectively.

The expression of "00 \quad ** $\boldsymbol{\Delta} \boldsymbol{\Delta}$ h" indicates that the number is hexadecimal.

The SI1 input (connector X4, pin No. 8) means that the negative direction over-travel inhibition input is set to b-contact as a factory default.
For using the device in the position or full-closed control mode, the negative direction over-travel inhibition input is set to b-contact by setting " 8 " and " 2 " in the seventh and eighth digits from the left respectively. The settings in the first to sixth digits from the left do not matter.
For the hexadecimal value "00000082h" or simply " $82 h$ ", enter " 130 " (decimal) to the parameter Pr4.00.
To make multiple settings, enter the function number in the first eight digits from the left and then enter a parameter in a decimal number after converting it from a hexadecimal number.
An example of this is shown in example 1 (the case on the left side).
Similarly, the SI3 input (connector X4, pin No. 26) has a function of damping control switching input 1 as a default when used in the position control mode.
Also, if the speed control is used, it is set to the function of speed zero clamp input.
Therefore, in order to set it to the damping control switching input in the position control mode, enter the value of " 10 " (decimal) in the parameter Pr4.02 meaning the hexadecimal number "OAh", or "Ah".
To change the speed zero clamp of pin No. 26 from b-contact to a-contact in the speed control mode, enter the decimal number of " 4352 " in the parameter Pr4.02 meaning the hexadecimal number of "00001100h", or "1100h".

Caution...i. - Do not setup to a value other than that specified in the table.

- Do not assign specific function to 2 or more signals. Duplicated assignment will cause Err33.0 I/F input multiple assignment error 1 or Err33.1 I/F input multiple assignment error 2.
*1 Servo-on input signal (SRV-ON) must be used to enable servo-on.
*2 When using control mode switching input (C-MODE), set the signal to all control modes. If the signal is set to only 1 or 2 control modes, Err33.2 I/F input function number error 1 or Err33.3 I/F input function number error 2 will be generated.
- The control input pin set to invalid state does not affect any operation.
- Function (servo-on input, alarm clear, etc.) to be used in multiple control modes must be assigned to the same pin with correct logical arrangement. Incorrect setting will cause Err33.0 I/F input multiple assignment error 1 or Err33.1 I/F input multiple assignment error 2.
*3 Deviation counter clear input (CL) can be assigned only to SI7 input. Wrong assignment will cause Err33.6 Counter clear assignment error.
*4 Command pulse inhibit input (INH) can be assigned only to SI10 input. Wrong assignment will cause Err33.7 Command pulse input inhibit input.

Note \cdots • Input circuit, refer to P.3-30 and function, refer to P.3-37 to P.3-42.
Related page $\cdots \cdots$ P.4-33, P.4-34

Control Output Settings

Title of signal	Connector X4 Pin No.	Parameter No.
SO1 input	10,11	Pr4.10
SO2 input	34,35	Pr4.11
SO3 input	36,37	Pr4.12
SO4 input	38,39	Pr4.13
SO5 input	12	Pr4.14
SO6 input	40	Pr4.15

These parameters shall be set by using hexadecimal numbers. Setting shall be made for each control mode as shown in examples below. $00----\boldsymbol{\Delta}$ h: Position/Full-closed control
$00--* *--\mathrm{h}$: Speed control
00 ■----h: Torque control
Set an appropriate function number in place of "■ ", " * * " and " $\boldsymbol{\Delta} \boldsymbol{\Delta}$ ". For the function number, see the table on the right.

(e.g. 1) Parameter setting

Setup value	Title	Symbol
00h	Invalid	-
02h	Servo-Ready output	S-RDY
03h	External brake release signal	BRK-OFF
04h	Positioning complete output	INP
05h	At-speed output	AT-SPPED
06h	Torque in-limit signal output	TLC
07h	Zero-speed detection output signal	ZSP
08h	Speed coincidence output	V-COIN
09h	Alarm output 1	WARN1
OAh	Alarm output 2	WARN2
OBh	Positional command ON/OFF output	P-CMD
OCh	Positioning complete 2	INP2
ODh	Speed in-limit output	V-LIMIT
OEh	Alarm attribute output	ALM-ATB
0Fh	Speed command ON/OFF output	V-CMD

(e.g. 2) Parameter setting

00050504 h (Hexadecimal numbers)

Position/ Full-closed Control (Positioning complete)
Velocity Control
Torque Control
(Speed arrival output)
(Speed zero clamp input; b-contact)
Convert to a decimal number
328964 «Enter this value to the relevant parameter.

- Same function can be assigned to 2 or more output signals.
- Control output pin set to invalid always has the output transistor turned OFF.
- Do not change the setup value shown in the table.

Caution $\cdots \%$ *1 Note that the setup values are displayed in decimal on the front panel.
Note - Input circuit, refer to P.3-32 and function, refer to P.3-45 to P.3-48.
Related page ...? P.4-35
4. Setup
5. Details of parameter
List of Parameters 4-2
[Class 0] Basic setting 4-4
[Class 1] Gain adjustment 4-13
[Class 2] Damping control 4-20
[Class 3] Verocity/ Torque/ Full-closed control 4-25
[Class 4] I/F monitor setting 4-33
[Class 5] Enhancing setting 4-43
[Class 6] Special setting 4-52
2.Trial Run (JOG run)
Inspection Before Trial Run 4-59
Trial Run by Connecting the Connector X4 4-60
Setup of Motor Rotational Speed and Input Pulse Frequency 4-63

- A parameter is designated as follows:

Class PrO. 00 Parameter No.

- Definition of symbols under "Related mode" P: position control, S: velocity control,
T: torque control, F: full closed control

Note . \because - Only for position control type is not provided with X2 (Communication connector), X3 (Safety

 function connector), X5 (External scale connector) and analog input.| Parametr No. | | Title | | | | Related Control Mode | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Class | No. | | | | | P | S | T | F | page |
| | 00 | Input selection | SI1 (Pin No.8) | | | \bigcirc | \bigcirc | \bigcirc | \bigcirc | 4-33 |
| | 01 | | SI2 (Pin No.9) | | | \bigcirc | \bigcirc | O | \bigcirc | |
| | 02 | | SI3 (Pin No.26) | | | \bigcirc | - | \bigcirc | O | |
| | 03 | | SI4 (Pin No.27) | | | \bigcirc | \bigcirc | \bigcirc | 0 | |
| | 04 | | SI5 (Pin No.28) | | | \bigcirc | - | - | \bigcirc | |
| | 05 | | SI6 (Pin No.29) | | | \bigcirc | - | \bigcirc | \bigcirc | 4-34 |
| | 06 | | SI7 (Pin No.30) | | | \bigcirc | \bigcirc | - | 0 | |
| | 07 | | SI8 (Pin No.31) | | | \bigcirc | \bigcirc | \bigcirc | 0 | |
| | 08 | | SI9 (Pin No.32) | | | \bigcirc | - | \bigcirc | 0 | |
| | 09 | | Sl10 (Pin No.33) | | | \bigcirc | \bigcirc | O | 0 | |
| | 10 | Output selection | | | | \bigcirc | \bigcirc | O | 0 | |
| | 11 | | | | | \bigcirc | \bigcirc | - | 0 | |
| | 12 | | | | | \bigcirc | \bigcirc | \bigcirc | \bigcirc | 4-35 |
| | 13 | | | | | \bigcirc | \bigcirc | - | 0 | |
| | 14 | | | | | \bigcirc | \bigcirc | - | 0 | |
| | 15 | | SO6 (${ }_{\text {Pin No.40 }}^{\text {Open collector output) }}$) | | | \bigcirc | \bigcirc | - | 0 | |
| | 16 | Analog monitor 1 | | | ype | \bigcirc | - | O | 0 | |
| | 17 | | | | output gain | \bigcirc | \bigcirc | - | \bigcirc | |
| | 18 | Analog monitor 2 | | | ype | \bigcirc | \bigcirc | - | \bigcirc | 4-36 |
| | 19 | | | | output gain | \bigcirc | \bigcirc | \bigcirc | \bigcirc | |
| | 20 | Type of digital monitor | | | | \bigcirc | \bigcirc | \bigcirc | 0 | |
| | 21 | Analog monitor output setup | | | | \bigcirc | - | - | \bigcirc | |
| | 22 | Analog input 1 (A11) | | | set setup | \bigcirc | - | - | \bigcirc | |
| | 23 | | | filter | | \bigcirc | \bigcirc | - | 0 | |
| | 24 | | | | rvoltage setup | \bigcirc | \bigcirc | - | \bigcirc | 4-38 |
| | 25 | Analog input 2 (AI2) | | | set setup | \bigcirc | - | \bigcirc | \bigcirc | |
| | 26 | | | filter | | \bigcirc | \bigcirc | - | 0 | |
| | 27 | | | | rvoltage setup | \bigcirc | - | - | \bigcirc | |
| | 28 | Analog input 3 (AI3) | | | set setup | \bigcirc | - | - | 0 | |
| | 29 | | | filter | | \bigcirc | \bigcirc | \bigcirc | \bigcirc | |
| | 30 | | | | rvoltage setup | \bigcirc | - | \bigcirc | 0 | |
| | 31 | Positioning complete (In-position) | | | range | \bigcirc | - | - | \bigcirc | 4-39 |
| | 32 | | | | output setup | 0 | - | - | \bigcirc | |
| | 33 | INP hold time | | | | \bigcirc | - | - | 0 | |
| | 34 | Zero-speed | | | | \bigcirc | \bigcirc | \bigcirc | \bigcirc | 4-40 |
| | 35 | Speed coincidence range | | | | - | \bigcirc | \bigcirc | - | |
| | 36 | At-speed (Speed arrival) | | | | - | \bigcirc | O | - | |
| | 37 | Mechanical brake action | | at stalling setup | | \bigcirc | \bigcirc | - | \bigcirc | 4-41 |
| | 38 | | | at run | ning setup | \bigcirc | - | \bigcirc | \bigcirc | |
| | 39 | Mechanical brake action at running setup | | | | \bigcirc | \bigcirc | O | O | |
| | 40 | Selection of alarm output | | 1 | | \bigcirc | - | \bigcirc | \bigcirc | 4-42 |
| | 41 | | | 2 | | \bigcirc | \bigcirc | - | \bigcirc | |
| | 42 | 2nd Positioning complete (In-position) range | | | | \bigcirc | - | - | \bigcirc | |
| бu!pes бuppueyuョ [c sse\|o] | 00 | 3rd numerator of electronic gear | | | | 0 | - | | 0 | |
| | 01 | | | | | \bigcirc | - | - | 0 | |
| | 02 | 4th | | | | \bigcirc | - | - | 0 | 4-43 |
| | 03 | Denominator of pulse output division | | | | \bigcirc | - | \bigcirc | \bigcirc | |
| | 04 | Over-travel inhibit input setup | | | | \bigcirc | - | - | 0 | |
| | 05 | Sequence at over-travel inhibit | | | | \bigcirc | \bigcirc | O | 0 | |
| | 06 | Sequence at Servo-Off | | | | \bigcirc | \bigcirc | \bigcirc | \bigcirc | 4-44 |
| | 07 | main power OFF | | seque | ence | \bigcirc | \bigcirc | \bigcirc | \bigcirc | |
| | 08 | | | LV trip | p selection | \bigcirc | \bigcirc | \bigcirc | \bigcirc | |
| | 09 | | | detect | tion time | \bigcirc | \bigcirc | \bigcirc | \bigcirc | 4-45 |
| | 10 | Sequence at alarm | | | | \bigcirc | - | - | \bigcirc | |
| | 11 | Torque setup for emergency stop | | | | \bigcirc | \bigcirc | \bigcirc | \bigcirc | |
| | 12 | Over-load level setup | | | | \bigcirc | \bigcirc | \bigcirc | \bigcirc | 4-46 |
| | 13 | Over-speed level setup | | | | \bigcirc | \bigcirc | O | \bigcirc | |

Parametr No.		Title			Reataed Control Iode				$\begin{aligned} & \text { Detail } \\ & \text { page } \\ & \hline \end{aligned}$	
Class	No.				P	S	T	F		
6u!pes бuppuequa [c sse\|o]	14	Motor working range setup			\bigcirc	-	-	\bigcirc	4-46	
	15	I/F reading filter			\bigcirc	\bigcirc	0	0		
	16	Alarm clear input setup			\bigcirc	\bigcirc	0	O		
	17	Counter clear input mode			\bigcirc		-	O	4-47	
	18	Command pulse inhibit input		Invalidation	\bigcirc		-	\bigcirc		
	19			reading setup	\bigcirc	-	-	\bigcirc		
	20	Position setup unit select			\bigcirc	-	-	\bigcirc		
	21	Selection of torque limit			\bigcirc	\bigcirc	-	\bigcirc	4-48	
	22	2nd torque limit			\bigcirc	O	-	\bigcirc		
	23	Torque limit switching setup		hing	\bigcirc	\bigcirc	-	\bigcirc		
	24			-	\bigcirc	\bigcirc	-	0		
	25	External input	positive direction torque limit		\bigcirc	O	-	\bigcirc	4-49	
	26		negative direction torque limit		\bigcirc	\bigcirc	-	\bigcirc		
	27	Input gain of analog torque limit			\bigcirc	O	-	O		
	28	LED initial status			\bigcirc	\bigcirc	-	\bigcirc		
	29	RS232	baud rate setup		\bigcirc	\bigcirc	-	\bigcirc	4-50	
	30	RS485			\bigcirc	\bigcirc	0	\bigcirc		
	31	Axis address			\bigcirc	\bigcirc	0	\bigcirc		
	32	Command pulse input maximum setup			\bigcirc	-	-	\bigcirc		
	33	Pulse regenerative output limit setup			\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-51	
	34	For manufacturer's use								
	35	Front panel lock setup			\bigcirc	\bigcirc	0	0		
6u!pes \|e!oəds [9 sse	כ]	00	Analog torque feed forward conversion gain			\bigcirc	\bigcirc	-	\bigcirc	
	02	Velocity deviation excess setup			\bigcirc	-	-			
	04	JOG trial run command speed			0	\bigcirc	O	\bigcirc	4-52	
	05	Position 3rd gain		valid time	0	-	-	\bigcirc		
	06			scale factor	\bigcirc	-	-	O		
	07	Torque command additional value			\bigcirc	\bigcirc	-	-		
	08	Positive direction		torque compensation value	\bigcirc	-	-	\bigcirc		
	09	Negative direction			\bigcirc	-	-	O	4-53	
	10	Function expansion setup			\bigcirc	-	0	\bigcirc		
	11	Current response setup			\bigcirc	-	\bigcirc	O		
	13	2nd Inertia ratio			O	\bigcirc	-	O		
	14	Emergency stop time at alarm			\bigcirc	\bigcirc	0	\bigcirc		
	15	2nd over-speed level setup			\bigcirc	\bigcirc	\bigcirc	\bigcirc	4-54	
	17	Front panel parameter writing selection			\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	18	Power-up wait time			\bigcirc	\bigcirc	0	O		
	19	Encoder Z phase setup			-	-	-	\bigcirc	4-55	
	20	Z-phase setup of external scale			-		-	\bigcirc		
	21	Serial absolute external scale Z phase setup			-		-	\bigcirc		
	22	A, B phase external scale pulse output method selection			-		-	\bigcirc		
	23	Disturbance torque compensating gain			\bigcirc	O	-			
	24	Disturbance observer filter			\bigcirc	\bigcirc	-	-		
	27	Alarm latch time selection			O	-	0	O	4-56	
	31	Real time auto tuning		estimation speed	\bigcirc	-	-	-		
	32			custom setup	\bigcirc	-	-	-	4-57	
	34	Hybrid vibration suppression		gain	-	-	-	O		
	35			filter	-	-	-	\bigcirc		
	37	Oscillation detection level			-	-	0	\bigcirc	4-58	
	38	Alarm mask setup			\bigcirc	\bigcirc	\bigcirc	\bigcirc		
	39	For manufacturer's use								

1. Details of parameter
 [Class 0] Basic setting

Default: []

Setup the relationship between the direction of command and direction of motor rotation.
0 : Motor turns CW in response to positive direction command (CW when viewed from load side shaft end)
1: Motor turns CCW in response to positive direction command (CCW when viewed from load side shaft end)

Setup value	Command direction	Motor rotational direction	Positive direction drive inhibit input	Negative direction drive inhibit input
0	Positive direction	CW	Valid	-
	Negative direction	CCW	-	Valid
[1]{}	Positive direction	CCW	Valid	-
	Negative direction	CW	-	Valid

Pr0.01*	Control mode setup	Range	Unit	Default	Relatedontrol mode		
		0 to 6	-	0	P	S T	

You can set up the control mode to be used.

Setup value	Content	
	1st mode	2st mode
1	Velocity	-
2	Torque	-
$3^{* 1}$	Position	Velocity
$4^{* 1}$	Position	Torque
$5^{* 1}$	Velocity	Torque
6	Full-closed	-

*1) When you set up the combination mode of 3 , 4 or 5 , you can select either the 1 st or the 2 nd with control mode switching input (C-MODE). When C-MODE is open, the 1st mode will be selected.
When C-MODE is shorted, the 2nd mode will be selected.
Don't enter commands 10 ms before/after switching.

C-MODE

The waveform above shows when logical setting of C-MODE input is a-contact. When b-contact is used, open and short is reversed.

- A parameter is designated as follows: Class Pro. 00 Parameter No.
- For parameters which No. have a suffix of "*", changed contents will be validated when you turn on the control power.
- Only for position control type is not provided with X2 (Communication connector), X3 (Safety function connector), X5 (External scale connector) and analog input.

You can set up the action mode of the real-time auto-gain tuning.

Setup value	Mode	Varying degree of load inertia in motion
0	Invalid	Real-time auto-gain tuning function is disabled.
$[1]$	Standard	Basic mode. Do not use unbalanced load, friction compensation or gain switching.
2	Positioning *1	Main application is positioning. It is recommended to use this mode on equipment without unbalanced horizontal axis, ball screw driving equipment with low friction, etc.
3	Vertical axis *2	With additional features to the positioning mode - use this mode to positively and effectively compensate for unbalanced load to the vertical axis or minimize variations in setting time.
4	Friction	With additional features to the vertical axis mode - use this mode to positively and effectively reduce positioning setting time when the belt driving axis has high friction.
5	Load characteristic measurement	Estimate the load characteristics without changing current parameter setting. This mode requires use of the setup support software.
6	Customize *4	Functions of real-time auto-gain tuning can be customized to meet the requirements of the specific application by combining desired functions according to the Pr6.32 "Real-time auto-gain tuning custom setting".

*2 Torque control is the same as in the standard mode.
*3 Velocity control is the same as in the vertical axis mode. Torque control is the same as in the standard mode.
*4 Certain function(s) is not available in a specific control mode. Refer to description in Pr6.32.

Pr0.03

Selection of machine stiffness at real-time auto-gain tuning

Range	Unit	Default	Related control mode	
0 to 31	-	A,B,C-Cframe: 13 D to - -frame: 11	P	S

You can set up the response while the real-time auto-gain tuning is valid.

\[

\]

Higher the setup value, higher the velocity response and servo stiffness will be obtained. However, when increasing the value, check the resulting operation to avoid oscillation or vibration.
Control gain is updated while the motor is stopped. If the motor cannot be stopped due to excessively low gain or continuous application of one-way direction command, any change made to Pr0.03 "Selection of machine stiffness at real-time auto-gain tuning" is not used for update. If the changed stiffness setting is made valid after the motor stopped, abnormal sound or oscillation will be generated. To prevent this problem, stop the motor after changing the stiffness setting and check that the changed setting is enabled.

Note - A parameter is designated as follows: Class PrO. 00 Parameter No.

- For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
Related page ...:
- P.3-30... "Inputs and outputs on connector X4"

Default: []

Pr0 04	Inertia ratio	Range	Unit	Default	Related control mode		
0.04	Inertia ratio	0 to 10000	\%	250 *	P	S T	

Set 1st inertia ratio.
You can set up the ratio of the load inertia against the rotor (of the motor) inertia.

$$
\text { Pro. } 04=(\text { load inertia/ rotor inertia) } \times 100[\%]
$$

The inertia ratio will be estimated at all time while the real-time auto-gain tuning is valid, and its result will be saved to EEPROM every 30 min.

Caution...\%. If the inertia ratio is correctly set, the setup unit of Pr1.01 and Pr1.06 becomes (Hz). When the inertia ratio of Pr0.04 is larger than the actual, the setup unit of the velocity loop gain becomes larger, and when the inertia ratio of Pr0.04 is smaller than the actual, the setup unit of the velocity loop gain becomes smaller.

| Pr0.05 * | Selection of command pulse input | Range | Unit | Default | Related
 control mode | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 0 to 1 | - | 0 | P | F |

You can select either the photo-coupler input or the exclusive input for line driver as the command pulse input.

Setup value	Content
$[\mathbf{0}]$	Photo-coupler input (PULS1, PULS2, SIGN1, SIGN2)
1	Exclusive input for line driver (PULSH1, PULSH2, SIGNH1, SIGNH2)

Note ... Parameters which default values have a suffix of "*" will be automatically set up during real time auto-gain tuning. When you change manually, invalidate the real-time auto-gain tuning first then set, referring to P.5-8, "Release of Automatic Gain Adjusting Function" of Adjustment.

Default: []

Pr0.06 *	Command pulse rotational direction setup	Range	Unit	Default		
		0 to 1	-	0	P	F
Pr0.07 *	Command pulse input mode setup	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
		0 to 3	-	1	P	F

You can set up the rotational direction against the command pulse input, and the command pulse input format.

The table below shows combinations of Pr0.06 Command pulse rotational direction setup and Pr0.07 Command pulse input mode setup.
Pulses are counted at edges indicated by the arrows as shown in the table.

- Input format command pulse

Pro. 06 setup value Command pulse rotational direction setup	Pr0.07 setup value (Command pulse) input mode setup	Command pulse format	Signal title	Positive direction command	Negative direction command
[0]	0 or 2	90° phase difference 2-phase pulse (A + B-phase)	PULS SIGN	B-phase advances to A by 90°.	
	[1]	Positive direction pulse train $+$ Negative direction pulse train	PULS SIGN		
	3	pulse train Signal	PULS SIGN		
1	0 or 2	90° phase difference 2-phase pulse (A + B-phase)	PULS SIGN		
	1	Positive direction pulse train $+$ Negative direction pulse train	PULS SIGN		
	3	pulse train Signal	PULS SIGN		

- Permissible max. input frequency, and min. necessary time width of command pulse input signal.

Input I/F of PULS/SIGN signal		Permissible max input frequency	Min. necessary time width ($\mu \mathrm{s}$)						
		t1	t2	t ${ }^{\text {d }}$	t4	t5	t 6		
Pulse train interface exclusive to line driver			4Mpps	0.25	0.125	0.125	0.125	0.125	0.125
Pulse train interface	Line driver interface	500kpps	2	1	1	1	1	1	
	Open collector interface	200kpps	5	2.5	2.5	2.5	2.5	2.5	

Make the rising/falling time of the command pulse input signal to $0.1 \mu \mathrm{~s}$ or smaller.

[^30]Default: []

P	Command pulse counts per one motor revolution	Range	Unit	Default	Related control mode	
		0 to 1048576	pulse	10000	P	

Set the command pulses that causes single turn of the motor shaft.
When this setting is 0, Pr0.09 1st numerator of electronic gear and Pr0. 10 Denominator of electronic gear become valid.

Pr0.09	1st numerator of electronic gear	Range	Unit	Default	Related controal mode	
		0 to 2^{30}	-	0	F	F

Set the numerator of division/multiplication operation made according to the command pulse input. This setup is enabled when Pr0.08 command pulse counts per one motor revolution $=0$.

Pr0.10	Denominator of electronic gear	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
		1 to 2^{30}	-	10000	P	F

Set the Denominator of division/multiplication operation made according to the command pulse input.
This setup is enabled when Pr0.08 command pulse counts per one motor revolution $=0$.
<Interrelationship between Pr0.08, Pr0.09 and Pr0.10 during Position control>

Pr0.08	Pr0.09	Pr0.10	Command division/multiplication operation
1 to 1048576	(Not effect)	(Not effect)	Command pulse input Positional command * Regardless of setup of Pro.09 and Pro.10, this operation is processed according to setup value of Pro. 08 .
0	0	0 to 1073741824	Command * When both Pro. 08 and Pro. 09 are set to 0 , this operation is processed according to setup value of Pro. 10.
	1 to 1073741824	1 to 1073741824	Command Positional pulse input \square command $\xrightarrow{\text { command }}$ * When setup value of Pro. 08 is 0 , and Pr0.09\# 0 , this operation is processed according to setup value of Pro.09 and Pro.10.

<Interrelationship between Pr0.08, Pr0.09 and Pr0.10 during full closed control>

[^31]
1. Details of parameter

[Class 0] Basic setting

Default: []

Pr0.08	Pr0.09	Pr0.10	Command division/multiplication operation
(Invalid)	0	1 to 1073741824	If Pro.09 is 0 during full closed controlling, the process as shown above is performed with both numerator and denominator set to 1 .
	1 to 1073741824	1 to 1073741824	When setup value of $\operatorname{Pr} 0.09 \neq 0$, this operation is processed according to setup value of Pr0.09 and Pro. 10.

Caution $\cdots \%$ The desired setting can be determined by selecting value of numerator and denominator of electronic gear. However, an excessively high division or multiplication ratio cannot guarantee the operation. The ratio should be in a range between 1/1000 and 1000.
Excessively high multiplication ratio will cause Err27.2 (command pulse multiplication error protection) due to varying command pulse input or noises, even if the other settings are within the specified range.
During full closed controlling, do not change command division and multiplication ratio. Otherwise, Err25.0 (Hybrid over deviation alarm) will be generated.

Pr0.11*	Output pulse counts per one motor revolution	Range	Unit	Default	Relatednitrol mode		
Pr0.11		0 to 262144	P/r	2500	P	S T	T

You can set up the output pulse counts per one motor revolution for each $O A$ and $O B$ with the Pro. 11 setup.
Caution… For details of setup, refer to description in Pr5.03.

Note A parameter is designated as follows: Class Pro. 00 Parameter No.
-For parameters which No. have a suffix of "*", changed contents will be validated when you turn on the control power.
Related page $\ldots . \therefore$ - P.4-63... "Setup of Motor Rotational Speed and Input Pulse Frequency"

- P.6-7, P.6-8... "Protective function (Detail of error code)"

Default: []

Range	Unit	Default	Related control mode		
0 to 262144	-	0	P	S	T

For an application where the number of output pulses per one motor revolution is not an integer, set this parameter to a value other than 0 ; and the dividing ratio can be set by using Pr0.11 as the numerator and $\operatorname{Pr5.03}$ as the denominator.

Output pulse counts per one revolution
$=(\operatorname{Pr} 0.11$ setup value $/ \operatorname{Pr} 5.03$ setup value $) \times$ Encoder resolution $\times \frac{1}{4}$
<Combination of Pr0.11 Output pulse counts per one motor revolution and Pr5.03 Denominator of pulse output division>

Pr0.11	Pr5.03	Pulse reproducing process
1 to 262144	[0]	When the output source is encoder * When Pr5. $03=0$, the above process is made according to Pro. 11 setup value. The number of pulses of reproduced pulse output OA and OB are the number of pulses set in Pro.11. The resolution of pulse output per one revolution is equal to or less the encoder resolution. When the output source is external scale * Division ratio is 1:1.

* If Pr5.03 is not equal to 0 , then the above process is performed based on setup value of Pr0.11 and Pr5.03.
When the output source is encoder
The number of reproduced pulses (OA, OB) per one motor revolution is not an integer.
Note that when the number of pulses per one motor revolution is not an integer, Z-phase output is not synchronized with that of A-phase, reducing pulse width. The pulse output resolution per one revolution cannot become higher than the encoder resolution.

When output source is external scale

Setting:
numerator (Pr0.11 setting) \leqq denominator (Pr. 5.03 setting).
No multiplication

Note . A parameter is designated as follows: Class PrO. 00 Parameter No.

- For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
Related page: •P.2-82... "Setup of Torque Limit" • P.3-30... "Inputs and outputs on connector X4"
- P.6-3... "Protective Function"

You can set up the B-phase logic and the output source of the pulse output. With this parameter, you can reverse the phase relation between the A-phase pulse and the B-phase pulse by reversing the B -phase logic. Encoder or external scale can be selected as the output source for full-closed control. The encoder is selected as the source if not for full-closed control.
<Reversal of pulse output logic>

Caution \cdots. Setup value 2 and 3 are valid only for full-closed control. Setting must be 0 or 1 if not for fullclosed control.
The selection of the output source of Z-phase is held concurrently.
Setup value 0 and 1 are Z-phase output of encoder.
Setup value 2 and 3 are Z-phase output of external scale.

Pr0.13
1st torque limit

Range	Unit	Default	Related control mode		
0 to 500	$\%$	500	P	S	T

You can set up the limit value of the motor output torque.
Note ... For details of torque limit value, refer to P.2-82.

Pr0.14 Position deviation excess setup

| Range | Unit | Default | Related
 control |
| :---: | :---: | :---: | :---: | :---: |
| 0 to 130de | | | |

- Set excess range of positional deviation by the command unit (default).
- Setup unit can be changed to encoder unit through Pr5.20 (position setup unit selection). If the unit is changed, set up with the encoder pulse counts at the position control and with the external scale pulse counts at the full-closed control.
- Err24.0 (Error detection of position deviation excess) becomes invalid when you set up this to 0 .

Note
For description of "command unit" and "encoder unit", refer to P.4-48 "Pr5.20".

Pro. 15 *
Absolute encoder setup

| Range | Unit | Default | Related
 control | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 to 2 | - | 1 | P | F |

You can set up the using method of 17-bit absolute encoder.

Setup value	
0	Use as an absolute encoder.
$[1]$	Use as an incremental encoder.
2	Use as an absolute encoder, but ignore the multi-turn counter over.

Caution…? This parameter will be invalidated when 5 -wire, 20 -bit incremental encoder is used.

Default: []

Pr0.16*

External regenerative resistor setup

Range	Unit	Default	Related control mode		
0 to 3	-	A,B,G,H-frame: C,D,E,F-frame: 0	P	S	T

With this parameter, you can select either to use the built-in regenerative resistor of the driver, or to separate this built-in regenerative resistor and externally install the regenerative resistor (between B1 and B2 of Connector XB in case of A to D-frame, between B1 and B2 of Connector XC in case of D-frame(400V) and E-frame, between B1 and B2 of terminal block in case of F to H -frame).
$\mathrm{A}, \mathrm{B}, \mathrm{G}$ and H -frame driver is not provided with built-in resister.

Setup value	Regenerative resistor to be used	Function
$[0]$ (to F-frame)	Built-in resistor	Regenerative processing circuit will be activated and regenerative resistor overload protection will be triggered according to the built-in resistor (approx. 1\% duty).
1	External resistor	The driver trips due to regenerative overload protection (Err18.0), when regenerative processing circuit is activated and its active ratio exceeds 10\%.
2	External resistor	Regenerative processing circuit is activated, but no regenerative over-load protection is triggered.
[3]	No resistor	Both regenerative processing circuit and regenerative protection are not activated, and built-in capacitor handles all regenerative power.
(A, B, G, H-frame)		

Remarks $\cdots \therefore$ Install an external protection such as thermal fuse when you use the external regenerative resistor.
Otherwise, the regenerative resistor might be heated up abnormally and result in burnout, regardless of validation or invalidation of regenerative over-load protection.

Caution...ㅇ. When you use the built-in regenerative resistor, never to set up other value than 0 . Don't touch the external regenerative resistor.
External regenerative resistor gets very hot, and might cause burning.

Pr0.17 *

Load factor of external regenerative

 resistor selection| Range | Unit | Default | Related
 control mode | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 to 4 | - | 0 | P | S | T | F |

When selecting the external regenerative resistor (Pr0.16 = 1, 2), select the computing method of load factor of regenerative resistor.

Setup value	Function
$[0]$	Regenerative load factor is 100% when duty factor of external regenerative resistor is 10%.
1 to 4	For manufacturer's use (do not setup)

[^32]
1. Details of parameter
 [Class 1] Gain adjustment

		Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \\ \hline \end{gathered}$	
Pr1.00	1st gain of position loop	0 to 30000	0.1/s	A,B,C-frame: 480		

You can determine the response of the positional control system.
Higher the gain of position loop you set, faster the positioning time you can obtain.
Note that too high setup may cause oscillation.

		Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
Pr1.01	1st gain of velocity loop	1 to 32767	0.1 Hz	$\begin{array}{\|l\|} \hline \text { A,B,C-frame: } 270 \\ \text { D to H-frame: } 180 \end{array}$	S	T F

You can determine the response of the velocity loop.
In order to increase the response of overall servo system by setting high position loop gain, you need higher setup of this velocity loop gain as well. However, too high setup may cause oscillation.

Caution.…8. When the inertia ratio of Pro. 04 is set correctly, the setup unit of Pr1.01 becomes (Hz).

	p	Range	Unit	Default	Relatedcontrol mode		
Pr1.02	integration	1 to 10000	0.1 ms	$\text { A,B,C-frame: } 210$		S	

You can set up the integration time constant of velocity loop.
Smaller the setup, faster you can dog-in deviation at stall to 0 .
The integration will be maintained by setting to "9999".
The integration effect will be lost by setting to "10000".

Pr1.03	1st filter of speed detection	Range	Unit	Default	conelated	
		0 to 5	-	0	$\mathrm{P} \mid \mathrm{S}$	T

You can set up the time constant of the low pass filter (LPF) after the speed detection, in 6 steps.
Higher the setup, larger the time constant you can obtain so that you can decrease the motor noise, however, response becomes slow. Use with a default value of 0 in normal operation.

Pr1.04 1st time constant of torque filter

Range	Unit	Default	Related control mode
0 to 2500	0.01 ms	$\begin{array}{\|l\|} \hline \text { A,B,C-frame: } 84 \\ \text { Dto H-frame: } 126 \end{array}$	S

You can set up the time constant of the 1st delay filter inserted in the torque command portion. You might expect suppression of oscillation caused by distortion resonance.

[^33]| Pr1.05 | 2nd gain of position loop | Range | Unit | Default | Rela | mod |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 0 to 30000 | 0.1/s | $\begin{aligned} & \text { A,B,C-frame: } 570 \\ & \text { D to H-frame: } 380 \end{aligned}$ | P | F |
| Pr1.06 | 2nd gain of velocity loop | Range | Unit | Default | | |
| | | 1 to 32767 | 0.1 Hz | $\begin{aligned} & \text { A,B,C-frame: } 270 \\ & \text { D to H-frame: } 180 \end{aligned}$ | P | |
| Pr1.07 | 2nd time constant of velocity loop integration | Range | Unit | Default | | |
| | | 1 to 10000 | 0.1 ms | 10000 | P | T F |
| Pr1.08 | 2nd filter of speed detection | Range | Uni | Default | | mod |
| | | 0 to 5 | - | 0 | P S | T F |
| Pr1.09 | 2nd time constant of torque filter | Range | Unit | Default | | |
| | | 0 to 2500 | 0.01 ms | $\begin{array}{\|l\|} \hline \text { A,B,C-frame: } 84 \\ \text { D to H-frame: } 126 \end{array}$ | | |
| | Position loop, velocity loop, speed detection filter and torque command filter have their 2 pairs of gain or time constant (1st and 2nd). | | | | | |
| Realed page-->: | For details of switching the 1st and the 2nd gain or the time constant, refer to P.5-17 "Gain Switching Function" of Adjustment.
 The function and the content of each parameter is as same as that of the 1st gain and time constant. | | | | | |

Pr1.10	Velocity feed forward gain	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \\ \hline \end{gathered}$	
		0 to 1000	0.10\%	300	P	F

Multiply the velocity control command calculated according to the internal positional command by the ratio of this parameter and add the result to the speed command resulting from the positional control process.

Pr1.11

Velocity feed forward filter

| Range | Unit | Default | Related
 control mode | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 to 6400 | 0.01 ms | 50 | P | F |

Set the time constant of 1st delay filter which affects the input of velocity feed forward.
<Usage example of velocity feed forward>
The velocity feed forward will become effective as the velocity feed forward gain is gradually increased with the velocity feed forward filter set at approx. 50 (0.5 ms). The positional deviation during operation at a constant velocity is reduced as shown in the equation below in proportion to the value of velocity feed forward gain.

Positional deviation [unit of command] = command speed [unit of command/s] /
positional loop gain [1/s] × (100 - velocity feed forward gain [\%]) / 100

[^34]Default: []

Pr1.12	Torque feed forward gain	Range	Unit	Default	$\begin{array}{\|c\|} \text { Related } \\ \text { control mode } \\ \hline \end{array}$		
		0 to 1000	0.1\%	0	-	S	de

- Multiply the torque command calculated according to the velocity control command by the ratio of this parameter and add the result to the torque command resulting from the velocity control process.
- Positional deviation at a constant acceleration/deceleration can be minimized close to 0 by increasing the torque forward gain. This means that positional deviation can be maintained at near 0 over entire operation range while driving in trapezoidal speed pattern under ideal condition where disturbance torque is not active.

Pr1.13	Torque feed forward filter	Range	Unit	Default	$\left.\right\|_{\text {Related }} ^{\text {control mode }}$	
		0 to 6400	0.01 ms	0	P	F
	- Set up the time constant of 1st delay filter which affects the input of torque feed forward. - The torque feed forward will become effective as the torque feed forward gain is gradually increased with the torque feed forward filter is set at approx. 50 (0.5 ms). <Usage example of torque feed forward> - To use the torque feed forward, correctly set the inertia ratio. Use the value that was determined at the start of the real time auto tuning, or set the inertia ratio that can be calculated from the machine specification to Pr0.04 Inertia ratio. - The torque feed forward will become effective as the torque feed forward gain is gradually increased with the torque feed forward filter is set at approx. 50 (0.5 ms). - Positional deviation at a constant acceleration/deceleration can be minimized close to 0 by increasing the torque forward gain. This means that positional deviation can be maintained at near 0 over entire operation range while driving in trapezoidal speed pattern under ideal condition where disturbance torque is not active . Zero positional deviation is impossible in actual situation because of disturbance torque. As with the velocity feed forward, large torque feed forward filter time constant decreases the operating noise but increases positional deviation at acceleration change point.					
Caution \cdots : Zero positional deviation is impossible in actual situation because of disturbance torque. As with the velocity feed forward, large torque feed forward filter time constant decreases the operating noise but increases positional deviation at acceleration change point.						
Pr1.14	2nd gain setup	Range	Unit	Default	$\begin{array}{\|c\|} \text { Related } \\ \text { control mode } \\ \hline \end{array}$	

Arrange this parameter when performing optimum adjustment by using the gain switching function.

Setup value	Gain selection/switching
	1st gain is fixed at a value. By using the gain switching input (GAIN), change the velocity loop operation from PI to P. GAIN input photo-coupler OFF \rightarrow PI operation 0
	GAIN input photo-coupler ON \rightarrow P operation $*$ a-contact. ON/OFF of photo-coupler is reversed when b-contact.
$[1]$	Enable gain switching of 1st gain (Pr1.00-Pr1.04) and 2nd gain (Pr1.05- Pr1.09).

[^35]| Pr1.15 | Mode of position control switching | Range | Unit | Default | Related
 control mode | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| | | 0 to 10 | - | 0 | P | F |

Set up the triggering condition of gain switching for position control.

Setup value	Switching condition	Gain switching condition
[0]	Fixed to 1st gain	Fixed to the 1st gain (Pr1.00 to Pr1.04).
1	Fixed to 2nd gain	Fixed to the 2nd gain (Pr1.05 to Pr1.09).
2	With gain switching input	$\cdot 1$ st gain when the gain switching input (GAIN) is open. - 2nd gain when the gain switching input (GAIN) is connected to COM-. * If no input signal is allocated to the gain switching input (GAIN), the 1st gain is fixed.
3	Torque command is large	- Shift to the 2nd gain when the absolute value of the torque command exceeded (level + hysteresis) (\%) previously with the 1st gain. - Return to the 1st gain when the absolute value of the torque command was kept below (level - hysteresis) (\%) previously during delay time with the 2nd gain.
5	Speed command is large	- Valid for position and full-closed controls. - Shift to the 2nd gain when the absolute value of the speed command exceeded (level + hysteresis) (r/min) previously with the 1st gain. - Return to the 1st gain when the absolute value of the speed command was kept below (level - hysteresis) (r/min) previously during delay time with the 2nd gain.
6	Position deviation is large	- Valid for position and full-closed controls. - Shift to the 2nd gain when the absolute value of the positional deviation exceeded (level + hysteresis) (pulse) previously with the 1st gain. - Return to the 1st gain when the absolute value of the positional deviation was kept below (level - hysteresis) (pulse) previously over delay time with the 2nd gain. * Unit of level and hysteresis (pulse) is set as the encoder resolution for positional control and external scale resolution for full-closed control.
7	Position command exists	- Valid for position and full-closed controls. - Shift to the 2nd gain when the positional command was not 0 previously with the 1st gain. - Return to the 1st gain when the positional command was kept 0 previously during delay time with the 2nd gain.
8	Not in positioning complete	- Valid for position and full-closed controls. - Shift to the 2nd gain when the positioning was not completed previously with the 1st gain. - Return to the 1st gain when the positioning was kept in completed condition previously during delay time with the 2nd gain.
9	Actual speed is large	- Valid for position and full-closed controls. - Shift to the 2nd gain when the absolute value of the actual speed exceeded (level + hysteresis) (r/min) previously with the 1st gain. - Return to the 1st gain when the absolute value of the actual speed was kept below (level hysteresis) (r/min) previously during delay time with the 2nd gain.
10	Position command exists + Actual speed	- Valid for position and full-closed controls. - Shift to the 2nd gain when the positional command was not 0 previously with the 1st gain. - Return to the 1st gain when the positional command was kept at 0 during the delay time and the absolute value of actual speed was kept below (level - hysteresis) (r/min) previously with the 2nd gain.

Pr1.16 Delay time of position control switching

Range	Unit	Default	Rentated control mode	
0 to 10000	0.1 ms	50	P	F

For position controlling : When shifting from the 2nd gain to the 1st gain with Pr1.15 Position control switching mode set at $3,5,6,7,8,9$ or 10, set up the delay time from trigger detection to the switching operation.

[^36]Default: []

Pr1.17	Level of position control switching	Range	Unit	Default	Related control	0 to 20000
dependent						

For position controlling: Set up triggering level when Pr1.15 Position control gain switching mode is set at $3,5,6,9$ or 10 .
Unit of setting varies with switching mode.
Caution… Set the level equal to or higher than the hysteresis.

Pr1.18	Hysteresis at position control switching	Range	Unit	Default	Relatedcontrol mode	
		0 to 20000	Modedependent	33	P	F

For position controlling: Set up triggering hysteresis when Pr1.15 Position control gain switching mode is set at $3,5,6,9$ or 10 .
Unit of setting varies with switching mode.
Caution… When level < hysteresis, the hysteresis is internally adjusted so that it is equal to level.

Pr1.19	Position gain switching time	Range	Unit	Default	Related control mode	
		0 to 10000	0.1 ms	33	P	F

For position controlling: If the difference between Pr1.00 1st gain of position loop and Pr1. 05 2nd gain of poison loop is large, the increasing rate of position loop gain can be limited by this parameter.
The position loop gain will increase over the time set.
<Position gain switching time>
When using position control and full-closed control, gain of position loop rapidly changes, causing torque change and vibration. By adjusting Pr1.19 Position gain switching time, increasing rate of the poison loop gain can be decreased and vibration level can be reduced.
Caution \cdots Setting of this parameter does not affect the gain switching time when the gain of position loop is switched to lower level (gain is switched immediately).
Example: 1st (Pr1.00) > 2nd (Pr1.05)

[^37]Default: []
Pr1.20 Mode of velocity control switching

Range	Unit	Default	Related control mode
0 to 5	-	0	S

For velocity controlling: Set the condition to trigger gain switching.

Setup value	Switching condition	Gain switching condition
$[0]$	Fixed to the 1st gain.	Fixed to the 1st gain (Pr1.00 to Pr1.04).
1	Fixed to the 2nd gain.	Fixed to the 2nd gain (Pr1.05 to Pr1.09).
2	Gain switching input	- 1st gain when the gain switching input (GAIN) is open. - 2nd gain when the gain switching input (GAIN) is connected to COM-. * If no input signal is allocated to the gain switching input (GAIN), the 1st gain is fixed.
3	Torque command	- Shift to the 2nd gain when the absolute value of the torque command exceeded (level + hysteresis) (\%) previously with the 1st gain. - Return to the 1st gain when the absolute value of the torque command was kept below (level - hysteresis) (\%) previously during delay time with the 2nd gain.
4	- Valid only during velocity control. - Shift to the 2nd gain when the absolute value of the speed command variations exceeded (level + hysteresis) (10r/min/s) previously with the 1st gain. - Return to the 1st gain when the absolute value of the speed command variations was kept below (level - hysteresis) (10r/ min/s) during delay time previously with the 2nd gain.	
*The ist gain is fixed while the velocity control is not applied.		

Related page $\cdots: \cdot$ For the switching level and timing, refer to P.5-18, "Setup of Gain Switching Condition" of Adjustment.
Pr1.21

For velocity controlling: When shifting from the 2nd gain to the 1st gain with Pr1.20 Velocity control switching mode set at 3,4 or 5 , set the delay time from trigger detection to the switching operation.

	Level of velocity control switching	Range	Unit	Default		elated rol mode
Pr1. 22		0 to 20000	Mode- dependent	0	S	S

For velocity controlling: Set up triggering level when Pr1.20 Velocity control gain switching mode is set at 3,4 or 5 .
Caution $\cdots \%$ Unit of setting varies with switching mode.
Set the level equal to or higher than the hysteresis.

Pr1. 23

Hysteresis at velocity control switching

Range	Unit	Default	Related control mode
0 to 20000	Modee- dependent	0	S

For velocity controlling: Set up triggering hysteresis when Pr1.20 Velocity control gain switching mode is set at 3,4 or 5 .

Caution \cdots Unit of setting varies with switching mode.
When level < hysteresis, the hysteresis is internally adjusted so that it is equal to level.

[^38]Default: []

Pr1. 24	Mode of torque control switching	Range	Unit	Default	Related control mode
		0 to 3	-	0	T

For torque controlling: Set the condition to trigger gain switching.

Setup value	Switching condition	Gain switching condition
$[0]$	Fixed to the 1st gain.	Fixed to the 1st gain (Pr1.00 to Pr1.04).
1	Fixed to the 2nd gain.	Fixed to the 2nd gain (Pr1.05 to Pr1.09).
2	Gain switching input	- 1st gain when the gain switching input (GAIN) is open. $-2 n d ~ g a i n ~ w h e n ~ t h e ~ g a i n ~ s w i t c h i n g ~ i n p u t ~(G A I N) ~ i s ~ c o n n e c t e d ~ t o ~$ COM-. * If no input signal is allocated to the gain switching input (GAIN), the 1st gain is fixed.
3	Torque command	- Shift to the 2nd gain when the absolute value of the torque command exceeded (level + hysteresis) (\%) previously with the 1st gain. - Return to the 1st gain when the absolute value of the torque command was kept below (level - hysteresis) (\%) previously during delay time with the 2nd gain.

For torque controlling: When shifting from the 2nd gain to the 1st gain with Pr1.24 Torque control switching mode set at 3 , set up the delay time from trigger detection to the switching operation.

		Range	Unit	Default	Related control mode
26	Level of torque control switching	0 to 20000	Mode-	0	T

For torque controlling: Set up triggering level when Pr1.24 Torque control gain switching mode is set at 3 .
Unit varies depending on the setup of mode of control switching.
Caution \cdots Set the level equal to or higher than the hysteresis.

Pr1. 27	Hysteresis at torque control switching	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \\ \hline \end{gathered}$
		0 to 20000	Mode-	0	T

For torque controlling: Set up triggering hysteresis when Pr1.24 Torque control gain switching mode is set at 3 .
Unit of setting varies with switching mode.
Caution....: When level < hysteresis, the hysteresis is internally adjusted so that it is equal to level.

[^39]
1. Details of parameter
 [Class 2] Damping control

Range	Unit	Default	Related control mode		
0 to 4	-	0	P	S	F

Set up the resonance frequency to be estimated by the adaptive filter and specify the operation after estimation.

Setup value	Content	
$[\mathbf{0}]$	Adaptive filter: invalid	Parameters related to the 3rd and 4th notch filter hold the current value.
1	Adaptive filter: 1 filter is valid	One adaptive filter is enabled. Parameters related to the 3rd notch filter will be updated based on adaptive performance.
2	Adaptive filter: 2 filters are valid	Two adaptive filters are enabled. Parameters related to the 3rd and 4th notch filters will be updated based on adaptive performance.
3	Resonance frequency measurement mode	Measure the resonance frequency. Result of measurement can be checked with PANATERM. Parameters related to the 3rd and 4th notch filter hold the current value.
4	Clear result of adaptation	Parameters related to the 3rd and 4th notch filter are disabled and results of adaptive operation are cleared.

Pr2.01	1st notch frequency	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
		50 to 5000	Hz	5000	P	S T

Set the center frequency of the 1st notch filter.
Caution \cdots : The notch filter function will be invalidated by setting up this parameter to " 5000 ".

Pr2.02
1st notch width selection

| Range | Unit | Default | Related
 control mode | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 to 20 | - | 2 | P S | T F F |

Set the width of notch at the center frequency of the 1st notch filter.
Caution...s. Higher the setup, larger the notch width you can obtain. Use with default setup in normal operation.

Range	Unit	Default	Related control mode	
0 to 99	-	0	P S	T

Set the depth of notch at the center frequency of the 1st notch filter.
Caution \cdots Higher the setup, shallower the notch depth and smaller the phase delay you can obtain.

Pr2.05	2nd notch width selection	Range	Unit	Default		elated rol mod
		0 to 20	-	2	P	S T

[^40]

Set the depth of notch at the center frequency of the 2nd notch filter.
Caution...: Higher the setup, shallower the notch depth and smaller the phase delay you can obtain.

Pr2.07	3rd notch frequency	Range	Unit	Default	Relatedcontrol mode	
		50 to 5000	Hz	5000	P S	T
Notch frequency is automatically set to the 1st resonance frequency estimated by the adaptive filter.						
Caution \cdots \%	In no resonance point is found, the frequency is set to 5000.					

Set the width of notch at the center frequency of the 3rd notch filter.
Caution \cdots : Higher the setup, larger the notch width you can obtain. Use with default setup in normal operation. When the applicable filter function is used, parameter value is automatically set.

09	3rd notch depth selection	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \\ \hline \end{gathered}$		
2.09		0 to 99	-	0	P	S T	T

Set the depth of notch at the center frequency of the 3rd notch filter.
Caution...\%. Higher the setup, shallower the notch depth and smaller the phase delay you can obtain.
When the applicable filter function is used, parameter value is automatically set.

Set the width of notch at the center frequency of the 4th notch filter.
Caution \cdots : Higher the setup, larger the notch width you can obtain. Use with default setup in normal operation. When the applicable filter function is used, parameter value is automatically set.

Pr2.12
 4th notch depth selection

Range	Unit	Default	Related control mode		
0 to 99	-	0	P	S	T

Set the depth of notch at the center frequency of the 4th notch filter.
Caution \cdots : Higher the setup, shallower the notch depth and smaller the phase delay you can obtain. When the applicable filter function is used, parameter value is automatically set.

[^41]Default: []

Range	Unit	Default	Related control mode	
0 to 3	-	0	P	F

Among 4 filters select the filters to be used for damping control.

- When setup value is 0 : Up to 2 filters can be used simultaneously.
- When setup value is 1 or 2 : Select the filter with external input(s) (VS-SEL1 and/or VS-SEL2).

Setup value	vS-SEL2	vS-SEL1	1st damping	2nd damping	3rd damping	4th damping
[0]	-	-	\bigcirc	\bigcirc		
1	-		\bigcirc		\bigcirc	
	-	\bigcirc		\bigcirc		\bigcirc
2			\bigcirc			
		\bigcirc		\bigcirc		
	\bigcirc				\bigcirc	
	\bigcirc	\bigcirc				\bigcirc

- With setup value 3: Select the filter with command direction.

Setup value	Position command direction	1st damping	2nd damping	3rd damping	4th damping
3	Positive direction	\bigcirc		\bigcirc	
	Negative direction		\bigcirc		\bigcirc

- Switching of damping controls will be done on the rising edge of the command whose number of pulses $/ 0.166 \mathrm{~ms}$ has been changed from 0 while the positioning complete signal is being output.
When the damping frequency is increased or disabled, and positioning complete range is large, and pulses are stored in the filter at that time (the area represented by the value of position command before filter subtracted by the value of position command after filter and integrated with the time). Note that since these pulses will be discharged at a higher rate upon switching to return back to the original position, the motor may run at a speed higher than the command speed for a short time.

Pr2.14	1st damping frequency	Range	Unit	Default	$\begin{array}{c\|} \text { Related } \\ \text { control mode } \end{array}$	
		0 to 2000	0.1 Hz	0	P	F
Pr2.16	2nd damping frequency	Range	Unit	Default		
		0 to 2000	0.1 Hz	0	P	F
Pr2.18	3rd damping frequency	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \\ \hline \end{gathered}$	
		0 to 2000	0.1 Hz	0	P	F
Pr2.20	4th damping frequency	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
		0 to 2000	0.1 Hz	0	P	F

	You can set up the 1st to 4th damping frequency of the damping control which suppress vibration at the load edge. The driver measures vibration at load edge. Setup unit is $0.1[\mathrm{~Hz}]$.
Related page \cdots : $\%$	The setup frequency is 1.0 to $200.0[\mathrm{~Hz}]$. Setup of 0 to 9 becomes invalid. Refer to P.5-20, "Damping control" as well before using this parameter.

[^42]| Pr2.15 | 1st damping filter setup | Range | Unit | Default | $\begin{array}{\|c\|} \hline \text { Related } \\ \text { control mode } \\ \hline \end{array}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 0 to 1000 | 0.1 Hz | 0 | P | F |
| Pr2.17 | 2nd damping filter setup | Range | Unit | Default | $\begin{array}{\|c\|} \text { Related } \\ \text { control mode } \\ \hline \end{array}$ | |
| | | 0 to 1000 | 0.1 Hz | 0 | P | F |
| Pr2.19 | 3rd damping filter setup | Range | Unit | Default | $\begin{array}{\|c\|} \text { Related } \\ \text { control mode } \\ \hline \end{array}$ | |
| | | 0 to 1000 | 0.1 Hz | 0 | P | F |
| Pr2.21 | 4th damping filter setup | Range | Unit | Default | $\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$ | |
| | | 0 to 1000 | 0.1 Hz | 0 | P | F |

If torque saturation occurs with damping frequency (1st- 4th) enabled, decrease the setup value, or if the operation is slow, increase it. Usually set it to 0 .
Caution \cdots The maximum setup value is internally limited to the corresponding damping frequency or 2000 - damping frequency, whichever is smaller.
Related page $\cdots:$: Refer to P.5-24, "Damping control" as well before using this parameter.

\section*{| Pr2.22 | Positional command smoothing filter |
| :--- | :--- |}

Range	Unit	Default	Related control mode	
0 to 10000	0.1 ms	0	P	F

- Set up the time constant of the 1st delay filter in response to the positional command.
- When a square wave command for the target speed Vc is applied, set up the time constant of the 1 st delay filter as shown in the figure below.

*1 Actual filter time constant (setup value $\times 0.1 \mathrm{~ms}$) has the maximum absolute error of 0.2 ms for a time constant below 100 ms and the maximum relative error of 0.1% for a time constant 20 ms or more.
*2 Switching of Pr2.22 Positional command smoothing filter is performed on the rising edge of the command with the number of command pulses/ 0.166 ms is changed from 0 to a value other than 0 while the positioning complete is being output.
If the filter time constant is decreased and positioning complete range is increased, and a many number of plusses are accumulated in the filter (the area equivalent of "value of positional command filter - value of positional command after filter" integrated over the time), at the time of switching, these pulses are discharged at a higher rate, causing the motor to return to the previous position - the motor runs at a speed higher than the command speed for a short time.
*3 Even if Pr2.22 Positional command smoothing filter is changed, it is not applied immediately. If the switching as described in *2 occurs during this delay time, the change of Pr2.22 will be suspended.

[^43]Default: []

Pr2.23

Positional command FIR filter

Range	Unit	Default	Related control mode	
0 to 10000	0.1 ms	0	P	F

- Set up the time constant of the 1st delay filter in response to the positional command.
- When a square wave command of the target speed Vc is applied, set up the VC arrival time as shown in the figure below.

*1 The actual average travel time (setup value $\times 0.1 \mathrm{~ms}$) has the maximum absolute error of 0.1 ms for a time constant below 10 ms and the maximum relative error of 1.6% for a time constant 10 ms or more.
*2 When changing Pr2.23 Positional command FIR filter, stop the command pulse and wait until the filter switching wait time has elapsed. The filter switching wait time is the setup value $\times 0.1 \mathrm{~ms}+0.25 \mathrm{~ms}$ when the setup time is 10 ms , and setup value $\times 0.1 \mathrm{~ms} \times 1.05$ when the setup time is 10 ms or more. If $\operatorname{Pr} 2.23$ is changed while the command pulse is being input, the change is not reflected until the command pulse-less state has continued for the filter switching wait time.
*3 Even if Pr2.23 Positional command FIR filter is changed, it is not applied immediately. If the switching as described in *2 occurs during this delay time, the change of Pr2.23 will be suspended.

[^44]
1. Details of parameter
 [Class 3] Verocity/ Torque/ Full-closed control

Range	Unit	Default
0 to 3	-	0

control mode

This driver is equipped with internal speed setup function so that you can control the speed with contact inputs only.

Setup value	Speed setup method
$[\mathbf{0}]$	Analog speed command (SPR)
1	Internal speed command 1st to 4th speed (Pr3.04 to Pr3.07)
2	Internal speed command 1st to 3rd speed (Pr3.04 to Pr3.06), Analog speed command (SPR)
3	Internal speed command 1st to 8th speed (Pr3.04 to Pr3.11)

<Relationship between Pr3.00 Internal/external switching speed setup and the internal command speed selection 1, 2 and 3, and speed command to be selected>

Setup value	Selection 1 of internal command speed (INTSPD1)	Selection 2 of internal command speed (INTSPD2)	Selection 3 of internal command speed (INTSPD3)	Selection of Speed command
1	OFF	OFF	No effect	1st speed
	ON	OFF		2nd speed
	OFF	ON		3rd speed
	ON	ON		4th speed
2	OFF	OFF	No effect	1st speed
	ON	OFF		2nd speed
	OFF	ON		3rd speed
	ON	ON		Analog speed command
3	The same as Pr3.00=1		OFF	1st to 4th speed
	OFF	OFF	ON	5th speed
	ON	OFF	ON	6 th speed
	OFF	ON	ON	7th speed
	ON	ON	ON	8th speed

Internal command speed switching pattern should be so arranged as shown below that single input signals are selected alternately. If 2 or more input signals are selected simultaneously, unspecified internal command speed may be advertently selected, whose setting value and acceleration/deceleration setting will cause unexpected operation.

Example 1) When Pr3.00=1 or 2

Example 2) When Pr3.00=3

Speed command rotational direction selection

Range	Unit	Default	Related control mode
0 to 1	-	0	S

Select the Positive/Negative direction specifying method.

Setup value	Select speed command sign (1st to 8th speed)	Speed command direction (VC-SIGN)	Position command direction
[0]{}	+	No effect	Positive direction
	-	No effect	Negative direction
1	Sign has no effect.	OFF	Positive direction
	Sign has no effect.	ON	Negative direction

Default: []

Range	Unit	Default	Related control mode	
10 to 2000	$(\mathrm{r} / \mathrm{min}) / \mathrm{V}$	500	S	T

Based on the voltage applied to the analog speed command (SPR), set up the conversion gain to motor command speed.

- You can set up a "slope" of the relation between the command input voltage and the motor speed, with Pr3.02.
- Default is set to Pr3.02=500 [r/min], hence input of 6 V becomes $3000 \mathrm{r} / \mathrm{min}$.

Caution $\cdots \therefore$ 1. Do not apply more than $\pm 10 \mathrm{~V}$ to the speed command input (SPR).
2. When you compose a position loop outside of the driver while you use the driver in velocity control mode, the setup of Pr3.02 gives larger variance to the overall servo system.
Pay an extra attention to oscillation caused by larger setup of Pr3.02.

Pr3.03	Reversal of speed command input	Range	Unit	Default	Relatedcontrol mode	
		0 to 1	-	1	S	

Specify the polarity of the voltage applied to the analog speed command (SPR).

Setup value	Motor rotating direction		
0	Non-reversal	"+Voltage" \rightarrow "Positive direction", "-Voltage" \rightarrow "Negative direction"	
$[1]$	Reversal	"+Voltage" \rightarrow "Negative direction", "-Voltage" \rightarrow "Positive direction"	

Note Default of this parameter is 1 , and the motor turns to CW with (+) signal, this has compatibility to existing MINAS series driver.

Caution $\cdots \%$ When you compose the servo drive system with this driver set to velocity control mode and external positioning unit, the motor might perform an abnormal action if the polarity of the speed command signal from the unit and the polarity of this parameter setup does not match.

Note

- A parameter is designated as follows: Class PrO.00 Parameter No.
- For parameters which No. have a suffix of "*", changed contents will be validated when you turn on the control power.
Related page $\cdots \div$
- P.3-30... "Inputs and outputs on connector X4"

Default: []

Pr3.04	1st speed of speed setup	Range	Unit	Default	$\begin{array}{\|c\|} \hline \text { Related } \\ \text { control mode } \\ \hline \end{array}$	
		-20000 to 20000	r/min	0	S	
Pr3.05	2nd speed of speed setup	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
		-20000 to 20000	r/min	0	S	
Pr3.06	3rd speed of speed setup	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
		-20000 to 20000	r/min	0	S	
Pr3.07	4th speed of speed setup	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
		-20000 to 20000	r/min	0	S	
Pr3.08	5th speed of speed setup	Range	Unit	Default	$\begin{array}{\|c\|} \hline \text { Related } \\ \text { control mode } \end{array}$	
		-20000 to 20000	r/min	0	S	
Pr3.09	6th speed of speed setup	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
		-20000 to 20000	r/min	0	S	
Pr3.10	7th speed of speed setup	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
		-20000 to 20000	r/min	0	S	
Pr3.11	8th speed of speed setup	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
		-20000 to 20000	$\mathrm{r} / \mathrm{min}$	0	S	

Set up internal command speeds, 1st to 8th.

Pr3.12	Acceleration time setup	Range	Unit	Default	$\begin{array}{\|c\|} \hline \text { Related } \\ \text { control mode } \\ \hline \end{array}$	
		0 to 10000		0	S	
Pr3.13	Deceleration time setup	Range	Unit	Default	$\left\lvert\, \begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}\right.$	
		0 to 10000		0	S	

Set up acceleration/deceleration processing time in response to the speed command input. Set the time required for the speed command (stepwise input) to reach $1000 \mathrm{r} / \mathrm{min}$ to $\operatorname{Pr} 3.12$ Acceleration time setup. Also set the time required for the speed command to reach from $1000 \mathrm{r} / \mathrm{min}$ to $0 \mathrm{r} / \mathrm{min}$, to Pr3. 13 Deceleration time setup.
Assuming that the target value of the speed command is $\mathrm{Vc}(\mathrm{r} / \mathrm{min})$, the time required for acceleration/deceleration can be computed from the formula shown below.

Acceleration time $(\mathrm{ms})=\mathrm{Vc} / 1000 \times \operatorname{Pr} 3.12 \times 1 \mathrm{~ms}$
Deceleration time $(\mathrm{ms})=\mathrm{Vc} / 1000 \times \operatorname{Pr} 3.13 \times 1 \mathrm{~ms}$

Caution $\cdots . \quad$ When the speed difference between the speed command being selected and the speed command after acceleration/deceleration indicates the same direction as that of the speed command applied after acceleration/deceleration, result is "acceleration" and if the reverse direction, the result is "deceleration".

[^45]Default: []
Pr3.14

Sigmoid acceleration/ deceleration tim	Range	Unit	Default		ated 1 mode
setup	0 to 1000	ms	0	S	

Set S-curve time for acceleration/deceleration process when the speed command is applied. According to Pr3.12 Acceleration time setup and Pr3.13 Deceleration time setup, set up sigmoid time with time width centering the inflection point of acceleration/deceleration.

Pr3.15
 Speed zero-clamp function selection

Range	Unit	Default	Related control mode	
0 to 3	-	0	S	T

You can set up the function of the speed zero clamp input.

Setup value	Function of ZEROSPD (Pin-26)
$[0]$	Invalid: Speed zero-clamp input is ignored.
1	Speed command is forced to 0 when the speed zero clamp (ZEROSPD) input signal is turned ON
2	Speed command is forced to 0 when the speed zero clamp (ZEROSPD) input signal is turned ON *1. And when the actual motor speed drops to Pr3.16 Speed zero clamp level or below, the position control is selected and servo lock is activated at this point. The fundamental operations except for this function (switching to the position control) are identical to those when setup value is 1.
3	When the speed zero clamp (ZEROSPD) input signal is ON *1 and speed command is below Pr3.16 Speed zero clamp level -10 r/min, then the position control is selected and servo lock is activated at that point.

*1 The default logic is b-contact: the function is enabled while the terminal is open (input signal is ON). Refer to P.3-37 Control input.

Pr3.16

Speed zero clamp level

Range	Unit	Default	Related control mode	
10 to 20000	$\mathrm{r} / \mathrm{min}$	30	S	T

Select the timing at which the position control is activated as the Pr3.15 Speed zero-clamp function selection is set to 2 or 3 .
If $\operatorname{Pr} 3.15=3$, then hysteresis of $10 \mathrm{r} / \mathrm{min}$ is provided for detection.

[^46]Default: []
Pr3.17 Selection of torque command

| Range | Unit | Default | Related
 control mode |
| :---: | :---: | :---: | :---: | :---: |
| 0 to 2 | - | 0 | T |

You can select the input of the torque command and the speed limit.

Setup value	Torque command input	Velocity limit input
$[0]$	Analog input $1^{* 1}$ (Al1, 16-bit resolution)	Parameter value (Pr3.25)
1	Analog input 2 (AI2, 12-bit resolution)	Analog input 1 (AI1, 16-bit resolution)
2	Analog input 1 ${ }^{* 1}$ (Al1, 16-bit resolution)	Parameter value (Pr3.21, Pr3.22)

*1 For Pr0.01 Control mode setup =5 (velocity/torque control), the torque command input is the analog input 2 (Al2, 12-bit resolution).

Pr3.18
Torque command direction selection

Range	Unit	Default	Related control mode
0 to 1	-	0	T

Select the direction positive/negative direction of torque command.

Setup value	Designation
$[0]$	Specify the direction with the sign of torque command. Example: Torque command input (+) for positive direction, (-) for negative direction
1	Specify the direction with torque command sign (TC-SIGN). OFF: Positive direction, ON: Negative direction

Pr3. 19
Input gain of torque command

Range	Unit	Default	Related control mode
10 to 100	$0.1 \mathrm{~V} / 100 \%$	30	T

Based on the voltage (V) applied to the analog torque command (TRQR), set up the conversion gain to torque command (\%).

- Unit of the setup value is [$0.1 \mathrm{~V} / 100 \%$] and set up input voltage necessary to produce the rated torque.
- Default setup of 30 represents $3 \mathrm{~V} / 100 \%$.

Pr3.20
Input reversal of torque command

Range
0 to 1

Unit \quad Default Related onitrol mode

Set up the polarity of the voltage applied to the analog torque command (TRQR).

Setup value	Direction of motor output torque	
$[0]$	Non-reversal	"+Voltage" \rightarrow "Positive direction", "-Voltage" \rightarrow "Negative direction"
1	Reversal	"+Voltage" \rightarrow "Negative direction", "-Voltage" \rightarrow "Positive direction"

Default: []
Pr3. 21
Speed limit value 1

Range	Unit	Default	Related control mode
0 to 20000	$\mathrm{r} / \mathrm{min}$	0	T

Set up the speed limit used for torque controlling.
During the torque controlling, the speed set by the speed limit value cannot be exceeded. When Pr3.17 = 2, the speed limit is applied upon receiving positive direction command.

Pr3.23*

External scale selection

Range	Unit	Default	Related control	0 to 2

Select the type of external scale.

Setup value	External scale type	Compatible scale	Compatible speed
$[0]$	A,B phase output type *11	External scale of A, B phase output type	to 4Mpps (after quadrupled)
1	Serial communication type (incremental version) ${ }^{* 1}$	Magnescale Co., Ltd. SR75, SR85, SL700, SL710	to 400Mpps
2	Serial communication type (absolute version) ${ }^{* 1}$	Mitsutoyo Corp. AT573, ST771A, ST773A Magnescale Co., Ltd. SR77, SR87	to 400Mpps

*1 Connect the external scale so that it increments the count as the motor shaft turns positive direction, and decrements as the shaft turns negative direction. If this connection arrangement is impossible due to installation condition, etc., use the count reverse function of Pr3.26 Reversal of direction of external scale.
Caution... When the setup value is 1 or 2 while the A, B phase output type is connected, Err50.0 External scale wiring error protection occurs, and if the setup value is 0 while the serial communication type is connected, Err55.0, 1 or 2 A phase, B phase or Z phase wiring error protection will occur.

Note

- A parameter is designated as follows: Class PrO.00 Parameter No.
- For parameters which No. have a suffix of "*", changed contents will be validated when you turn on the control power.
Related page ...?
- P.3-30... "Inputs and outputs on connector X4" • P.6-2 "Protective Function"

Range	Unit	Default	Related control mode	
0 to $1,048,576$	-	0		F

Set up the numerator of the external scale dividing setup.
When setup value $=0$, encoder resolution is used as numerator of the division.

Pr3 25 *	Denominator of external scale division	Range	Unit	Default	${ }_{\text {Related }}^{\text {Rentrol mode }}$
Pr3.25	Denominator of external scale division	1 to 1,048,576	-	10000	- F

- Check the number of encoder feedback pluses per one motor revolution and the number of external scale pulses per one motor revolution, and then set up the numerator of external scale division (Pr3.24) and the denominator of external scale division (Pr3.25) to establish the expression shown below.
- With Pr3. 24 set at 0 , the encoder resolution is automatically used as numerator.

Example: When ball screw pitch is 10 mm , scale 0.1 _m/pulse, encoder resolution 20 bits (1048.576 pulses);

$$
\frac{\text { Pr3.24 } 1048576}{\text { Pr3. } 25100000}=\frac{\text { Encoder resolution per one motor revolution [pulse] }}{\text { External scale resolution per one motor revolution [pulse] }}
$$

Caution. \cdots. If this ratio is wrong, the difference between the position calculated based on the encoder pulses and the position calculated based on the external scale pulses becomes large over a long travel distance and will activate the excess hybrid deviation error protection.

Pr3.26 * Reversal of direction of external scale

Range	Unit	Default	Related control mode	
0 to 1	-	0		F

Reverse the direction of external scale, feedback counter.

Setup value	Content
$[0]$	Count value of external scale can be used as it is.
1	Sign (positive/negative) of count value of external scale should be inverted.

Note \cdots For setting method of this parameter, refer to P.3-12 Full closed control mode.

Pr3.27 *

| External scale Z phase disconnection | Range | Unit | Default | Related
 control mode |
| :--- | :---: | :---: | :---: | :---: | :---: |
| detection disable | 0 to 1 | - | 0 | F |

Enable/disable Z-phase disconnection detection when A, B phase output type external scale is used.

Setup value	Content
$[0]$	Valid
1	Invalid

[^47]Default: []

Pr3.28 * Hybrid deviation excess setup

Range	Unit	Default	Related control mode	
1 to $134,217,728$	Command unit	16000		F

You can setup the permissible gap (hybrid deviation) between the present motor position and the present external scale position.

As the motor turns the number of revolutions set by this parameter, the hybrid deviation is cleared to 0 . No clearing is made with setup value 0 .

<Hybrid deviation clear feature>

As the motor reaches the number of revolutions set by Pr3.29 Hybrid deviation clear setup, clear the hybrid deviation to 0 . This feature allows the motor to be used in an application where hybrid deviation accumulate due to slippage, etc.

Note: Revolution in the hybrid deviation clear setup is counted by using encoder feedback pulses.
Caution...?. To use the hybrid deviation clear, be sure to set Pr3.29 Hybrid deviation clear setup to the appropriate value. If the setup value is too small with respect to the value of Pr3. 28 Hybrid deviation excess setup, abnormal operation due to e.g. external scale connection error cannot be protected.
Limit sensor should be used to assure safety.

[^48]| | | Range | Unit | Default | $\left\lvert\, \begin{gathered}\text { Related } \\ \text { control mode }\end{gathered}\right.$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pr4.00 * | SI1 input selection | 0 to 00FFFFFFh | - | 00828282h | P | | T F |

Assign functions to SI 1 inputs.
These parameters are presented in hexadecimals. *5
Hexadecimal presentation is followed by a specific control mode designation.
$00---*_{*}^{*}$ h : position/full-closed control
$00-$ - $^{*} *--\mathrm{h}$: velocity control
00**----h : torque control
Replace ** with the function number.
For the function number see the table below. Logical setup is also a function number.

Title	Symbol	Setup value	
		a-contact	b-contact
Invalid	-	00h	Do not setup.
Positive direction over-travel inhibition input	POT	01h	81h
Negative direction over-travel inhibition input	NOT	02h	82h
Servo-ON input ${ }^{* 1}$	SRV-ON	03h	83h
Alarm clear input	A-CLR	04h	Do not setup.
Control mode switching input *2	C-MODE	05h	85h
Gain switching input	GAIN	06h	86h
Deviation counter clear input *3	CL	07h	Do not setup.
Command pulse inhibition input *4	INH	08h	88h
Torque limit switching input	TL-SEL	09h	89h
Damping control switching input 1	VS-SEL1	OAh	8Ah
Damping control switching input 2	VS-SEL2	OBh	8Bh
Electronic gear switching input 1	DIV1	0Ch	8Ch
Electronic gear switching input 2	DIV2	ODh	8Dh
Selection 1 input of internal command speed	INTSPD1	0Eh	8Eh
Selection 2 input of internal command speed	INTSPD2	0Fh	8Fh
Selection 3 input of internal command speed	INTSPD3	10h	90h
Speed zero clamp input	ZEROSPD	11h	91h
Speed command sign input	VC-SIGN	12h	92h
Torque command sign input	TC-SIGN	13h	93h
Forced alarm input	E-STOP	14h	94h
Inertia ratio switching input	J-SEL	15h	95h

Note \ldots For input pin assignment with default setting, refer to refer to P.3-37 Control input.
Related page $\cdots \cdots$ P. 3-50

<Example of change>

To change the default setting "Negative direction over-travel inhabitation input" (in all modes) for b-contact to for a-contact, set the input to 00020202h.

* For easier setting, use the setup support software PANATERM.

Caution.... - Do not setup to a value other than that specified in the table.

- Do not assign specific function to 2 or more signals. Duplicated assignment will cause Err33.0 I/F input multiple assignment error 1 or Err33.1 I/F input multiple assignment error 2.
*1 Servo-on input signal (SRV-ON) must be used to enable servo-on.
*2 When using control mode switching input (C-MODE), set the signal to all control modes. If the signal is set to only 1 or 2 control modes, Err33.2 I/F input function number error 1 or Err33.3 I/F input function number error 2 will be generated.
- The control input pin set to invalid state does not affect any operation.
- Function (servo-on input, alarm clear, etc.) to be used in multiple control modes must be assigned to the same pin with correct logical arrangement. Incorrect setting will cause Err33.0 I/F input multiple assignment error 1 or Err33.1 I/F input multiple assignment error 2.
*3 Deviation counter clear input (CL) can be assigned only to SI7 input. Wrong assignment will cause Err33.6 Counter clear assignment error.
*4 Command pulse inhibit input (INH) can be assigned only to SI10 input. Wrong assignment will cause Err33.7 Command pulse input inhibit input.
*5 Note that the front panel indicates parameter value in decimal number.

Pr4.01*	SI2 input selection	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \\ \hline \end{gathered}$		
		0 to 00FFFFFFFh	-	$\begin{gathered} 00818181 \mathrm{~h} \\ (8487297) \\ \hline \end{gathered}$	-	,	T F
Pr4.02*	SI3 input selection	Range	Unit	Default	$\begin{array}{\|c\|} \text { Related } \\ \text { control mode } \\ \hline \end{array}$		
		0 to 00FFFFFFFh	-	$\begin{aligned} & \text { 0091910Ah } \\ & (9539850) \\ & \hline \end{aligned}$	P	S	T F
Pr4.03 *	SI4 input selection	Range	Unit	Default	Related control mode		
		0 to 00FFFFFFh	-	$\begin{gathered} \text { 00060606h } \\ (394758) \\ \hline \end{gathered}$	P	S	T F
Pr4.04 *	SI5 input selection	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$		
		0 to 00FFFFFFFh	-	$\begin{gathered} 0000100 \mathrm{Ch} \\ (4108) \\ \hline \end{gathered}$	P	S	T F
Pr4.05 *	SI6 input selection	Range	Unit	Default	Related		
		0 to 00FFFFFFh	-	$\begin{gathered} \text { 00030303h } \\ (197379) \\ \hline \end{gathered}$	P	S	T F
Pr4.06 *	SI7 input selection	Range	Unit	Default	Relatedcontrol mode		
		0 to 00FFFFFFFh	-	$\begin{gathered} \text { 00000f07h } \\ (3847) \\ \hline \end{gathered}$	P	S	T F

Caution \cdots ? Deviation counter clear (CL) can be set up only with this parameter. If any other parameter is used for this purpose, Err33.6 Counter clear assignment error will be issued.

Pr4.07*	SI8 input selection	Range	Unit	Default			
		0 to 00FFFFFFFh	-	$\begin{gathered} \text { 00040404h } \\ (263172) \\ \hline \end{gathered}$	P	S	T F
Pr4.08 *	SI9 input selection	Range	Unit	Default	$\begin{array}{\|c\|} \hline \text { Related } \\ \text { control mode } \\ \hline \end{array}$		
		0 to 00FFFFFFFh	-	$\begin{gathered} \hline 00050505 \mathrm{~h} \\ (328965) \\ \hline \end{gathered}$	P	S	T F
Pr4.09 *	Sl10 input selection	Range	Unit	Default	$\begin{array}{\|c\|} \hline \text { Related } \\ \text { control mode } \end{array}$		
		0 to 00FFFFFFFh	-	$\begin{gathered} \text { 00000E88h } \\ (3720) \\ \hline \end{gathered}$	P		T F

Assign functions to SI 2 to SI 10 inputs.
These parameters are presented in hexadecimals.
Setup procedure is the same as described for Pr4.00.
Note For input pin assignment with default setting, also refer to P.3-37 Control input.
Caution \cdots : Command pulse inhibition input (INH) can be setup only with this parameter. If any other parameter is used for this purpose, Err33.7 INH assignment error will be issued.

Default: []

	SO1 output selection	Range	Unit	Default	$\begin{array}{\|c\|} \hline \text { Related } \\ \text { control mode } \\ \hline \end{array}$		
Pr4.10 *		0 to 00FFFFFFh	-	$\begin{gathered} \hline 00030303 \mathrm{~h} \\ (197379) \end{gathered}$		$S T$	T

Assign functions to SO1 outputs.
These parameters are presented in hexadecimals. " ${ }^{\text {" }}$
Hexadecimal presentation is followed by a specific control mode designation.
00----**h:position/full-closed control
00--**--h : velocity control
00**----h : torque control
Replace * * with the function number.
For the function number see the table below. Logical setup is also a function number.

Setup value	Title	Symbol
00h	Invalid	-
02h	Servo-Ready output	S-RDY
03h	External brake release signal	BRK-OFF
04h	Positioning complete output	INP
05h	At-speed output	AT-SPPED
06h	Torque in-limit signal output	TLC
07h	Zero-speed detection output signal	ZSP
08h	Speed coincidence output	V-COIN
09h	Alarm output 1	WARN1
0Ah	Alarm output 2	WARN2
OBh	Positional command ON/OFF output	P-CMD
0Ch	Positioning complete 2	INP2
0Dh	Speed in-limit output	V-LIMIT
OEh	Alarm attribute output	ALM-ATB
OFh	Speed command ON/OFF output	V-CMD

Note

For output pin assignment with default setting, also refer to P.345 Output signals (common) and their functions.
Related page ...: P. 3-52
<Example of change>
To change the default setting "External brake release signal" (in all modes) to "Alarm output 1", set the input to 00090909h.

* For easier setting, use the setup support software PANATERM.

Caution...: - Same function can be assigned to 2 or more output signals.

- Control output pin set to invalid always has the output transistor turned OFF.
- Do not change the setup value shown in the table.
*1 Note that the setup values are displayed in decimal on the front panel.

Pr4.11*	SO2 output selection	Range	Unit	Default	$\begin{array}{\|c\|} \hline \text { Related } \\ \text { control mode } \\ \hline \end{array}$	
		0 to 00FFFFFFFh	-	$\begin{gathered} 00020202 \mathrm{~h} \\ (131586) \\ \hline \end{gathered}$	P S	T F
Pr4.12 *	SO3 output selection	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
		0 to 00FFFFFFFh	-	$\begin{gathered} \text { 00010101h } \\ (65793) \end{gathered}$	P S	T F
Pr4.13 *	SO4 output selection	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
		0 to 00FFFFFFh	-	$\begin{gathered} 00050504 \mathrm{~h} \\ (328964) \\ \hline \end{gathered}$	P S	T F
Pr4.14 *	SO5 output selection	Range	Unit	Default	$\begin{array}{\|c\|} \hline \text { Related } \\ \text { control mode } \\ \hline \end{array}$	
		0 to 00FFFFFFFh	-	$\begin{gathered} \text { 00070707h } \\ (460551) \\ \hline \end{gathered}$	P S	T F
Pr4.15 *	SO6 output selection	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
		0 to 00FFFFFFh	-	$\begin{gathered} 00060606 \mathrm{~h} \\ (394758) \\ \hline \end{gathered}$	P S	T F
Assign functions to SO 2 to SO 6 outputs. These parameters are presented in hexadecimals. Setup procedure is the same as described for Pr4.10.						

Default: []

Pr4. 16

Type of analog monitor 1

| Range | Unit | Default | Related
 control mode |
| :---: | :---: | :---: | :---: | :---: | :---: |$|$

Select the type of monitor for analog monitor 1. *See the table shown on the next page.

Pr4.17 Analog monitor 1 output gain

Range
0 to 214748364

Unit	Default	Related
$\left\lvert\, \begin{aligned} & \text { [Monitor unit } \\ & \text { in Pr4.16]/V } \end{aligned}\right.$	0	P S

Set up the output gain of analog monitor 1 .
For Pr4.16 = 0 Motor speed, 1 V is output at the motor speed $[\mathrm{r} / \mathrm{min}]=\operatorname{Pr} 4.17$ setup value.

Pr4.18

Type of analog monitor 2

Range	
0 to 21	

Unit	Default	c
-	4	P

Related
control mode

Select the type of monitor for analog monitor 2. *See the table shown on the next page.

		Range	Unit	Default	Related control mode		
Pr4.19	Analog monitor 2 output gain	0 to 214748364	[Monitor unit	0	P	S	F

Set up the output gain of analog monitor 2.
For Pr4.18 = 3 Torque command, 1 V is output at the torque command [\%] = $\operatorname{Pr} 4.19$ setup value.

Pr4.20	Type of digital monitor	Range	Unit	Default	Relatedcontrol mode		
		0 to 3	-	0	P	S T	T F

Select type of the digital monitor.

Setup value	Type of monitor	Digital signal output	
		L output	H output
$[0]$	Positioning complete condition	Not completed	Completed
1	Positional command	Without command	With command
2	Alarm	Not generated	Generated
3	Gain selected	1st gain	2nd gain (including 3rd gain)

Note ... A parameter is designated as follows: Class Pro. 00 Parameter No.

- For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
- Only for position control type is not provided with analog input.
- Only for position control type is not provided with digital monitor output.

Related page ...: - P.3-30... "Inputs and outputs on connector X4"

Pr4.16/Pr4.18	Type of monitor	Unit	Output gain for setting Pr4.17/Pr4.19 = 0
0	Motor speed	r/min	500
1	Positional command speed *3	$\mathrm{r} / \mathrm{min}$	500
2	Internal positional command speed *3	$\mathrm{r} / \mathrm{min}$	500
3	Velocity control command	$\mathrm{r} / \mathrm{min}$	500
4	Torque command	\%	33
5	Command positional deviation *4	pulse (Command unit)	3000
6	Encoder positional deviation *4	pulse (Encoder unit)	3000
7	Full-closed deviation *4	pulse (External scale unit)	3000
8	Hybrid deviation	pulse (Command unit)	3000
9	Voltage across PN	V	80
10	Regenerative load factor	\%	33
11	Overload factor	\%	33
12	Positive direction torque limit	\%	33
13	Negative direction torque limit	\%	33
14	Speed limit value	$\mathrm{r} / \mathrm{min}$	500
15	Inertia ratio	\%	500
16	Analog input 1 *2	V	1
17	Analog input 2 *2	V	1
18	Analog input 3 *2	V	1
19	Encoder temperature ${ }^{5}$	${ }^{\circ} \mathrm{C}$	10
20	Driver temperature	${ }^{\circ} \mathrm{C}$	10
21	Encoder single-turn data *1	pulse (Encoder unit)	110000

*1 The encoder rotation data CCW is always positive value regardless of Pr0.00 Rotational direction setup.
The direction of other monitor data basically follows Pr0.00 Rotational direction setup.
*2 Analog inputs 1,2 and 3 always output terminal voltage regardless of usage of analog input function. Only for position control type is not provided with analog inputs.
*3 For the command pulse input, the speed before the command filter (smoothing, FIR filter) is defined as positional command speed and speed after filter is defined as internal command speed.

*4 Command positional deviation is the deviation with respect to the command pulse input and the encoder positional deviation/ full-closed positional deviation is the deviation at the input section of the positional control, as described in the figure below.

Positional command deviation (command unit)
*5 Temperature information from the encoder includes value only when it is a 20 -bit incremental encoder. Otherwise, the value is always 0 .

Default: []
Pr4.21 Analog monitor output setup

Range	Unit	Default	Related control	
0 to 2	-	0	P	S

Select output format of the analog monitor.

Setup value	Output format	
$[0]$	Signed data output	-10 V to 10 V
1	Absolute value data output	0 V to 10 V
2	Data output with offset	0 V to 10 V (5 V at center)

Pr4.22	Analog input 1 (Al1) offset setup	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \\ \hline \end{gathered}$
		-5578 to 5578	0.359 mV	0	P S T F
Set up the offset correction value applied to the voltage fed to the analog input 1.					

Analog input 1 (Al1) filter

| Range | Unit | Default | Related
 control mode |
| :---: | :---: | :---: | :---: |$|$

Set up the time constant of 1st delay filter that determines the lag time behind the voltage applied to the analog input 1.

Pr4. 24

Analog input 1 (Al1) overvoltage setup

Range	Unit	Default	Related control lode	
0 to 100	0.1 V	0	P	S

Set up the excessive level of the input voltage of analog input 1 by using the voltage associated with offset.

Pr4.25 Analog input 2 (AI2) offset setup

| Range | Unit | Default | Related
 control mode |
| :---: | :---: | :---: | :---: | :---: |$|$

Set up the offset correction value applied to the voltage fed to the analog input 2.

Set up the time constant of 1 st delay filter that determines the lag time behind the voltage applied to the analog input 2.

Range	Unit	Default	Related control mode		
0 to 100	0.1 V	0	P	S	T

Set up the excessive level of the input voltage of analog input 2 by using the voltage associated with offset.

Pr4. 28
Analog input 3 (AI3) offset setup

Range	Unit	Default	Related control mode	
-342 to 342	5.86 mV	0	P	S

Set up the offset correction value applied to the voltage fed to the analog input 3.

[^49]
Pr4.29 Analog input 3 (Al3) filter

Range	Unit	Default	Related control mode	
0 to 6400	0.01 ms	0	P	S

Set up the time constant of 1 st delay filter that determines the lag time behind the voltage applied to the analog input 3 .

Set up the excessive level of the input voltage of analog input 3 by using the voltage associated with offset.

Pr4.31	Positioning complete (In-position) range	Range	Unit	Default	Related contral	0 to 262144	Command unit
		10	P	F			

Set up the timing of positional deviation at which the positioning complete signal (INP1) is output.
Caution \cdots. The command unit is used as the default unit but can be replaced by the encoder unit by using Pr5.20. Positioning unit selection. Note that when the encoder unit is used, unit of Pro. 14 Positional deviation excess setup is also changed.

Note \cdots For description of "command unit" and "encoder unit", refer to P.4-48 "Pr5.20".

Pr4.32

Positioning complete (In-position) output setup

Range	Unit	Default	Related control mode
0 to 3	-	0	P

Select the condition to output the positioning complete signal (INP1).

Setup value	Action of positioning complete signal
$[0]$	The signal will turn on when the positional deviation is smaller than Pr4.31 (Positioning complete range)
1	The signal will turn on when there is no position command and the positional deviation is smaller than Pr4.31 (Positioning complete range).
2	The signal will turn on when there is no position command, the zero-speed detection signal is ON and the positional deviation is smaller than Pr4.31 (Positioning complete range).
3	The signal will turn on when there is no position command and the positional deviation is smaller than Pr4.31 (Positioning complete range). Then holds "ON" status until the next position command is entered.Subsequently, ON state is maintained until Pr4.33 INP hold time has elapsed. After the hold time, INP output will be turned ON/OFF ac- cording to the coming positional command or condition of the positional deviation.

Pr4.33

INP hold time

Range	Unit	Default	Related control mode	
0 to 30000	1 ms	0	P	F

Set up the hold time when Pr4.32 Positioning complete output setup $=3$.

Setup value	State of positioning complete signal
$[0]$	The hold time is maintained definitely, keeping ON state until the next positional command is received.
1 to 30000	ON state is maintained for setup time (ms) but switched to OFF state as the positional command is received during hold time.

[^50]Default: []
Pr4.34
Zero-speed

Range	Unit	Default	Related control mode	
10 to 20000	r/min	50	P	S

You can set up the timing to feed out the zero-speed detection output signal (ZSP or TCL) in rotational speed [r/min].
The zero-speed detection signal (ZSP) will be fed out when the motor speed falls below the setup of this parameter, Pr4.34.

- The setup of Pr4.34 is valid for both Positive and Negative direction regardless of the motor rotating direction.
- There is hysteresis of $10[r / m i n]$.

Set the speed coincidence (V-COIN) output detection timing.
Output the speed coincidence (V-COIN) when the difference between the speed command and the motor speed is equal to or smaller than the speed specified by this parameter.

*1 Because the speed coincidence detection is associated with $10 \mathrm{r} / \mathrm{min}$ hysteresis, actual detection range is as shown below.

Speed coincidence output OFF \rightarrow ON timing (Pr4.35-10) r/min
Speed coincidence output ON \rightarrow OFF timing (Pr4.35 + 10) r/min

Note

A parameter is designated as follows: Class PrO.00 Parameter No.
-For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
Related page ...:

- P.3-30... "Inputs and outputs on connector X4"

Set the detection timing of the speed arrival output (AT-SPEED).
When the motor speed exceeds this setup value, the speed arrival output (AT-SPEED) is output.
Detection is associated with $10 \mathrm{r} / \mathrm{min}$ hysteresis.

Pr		Range	Unit	Default	Relatedcontrol mode		
Pr4.37	Mechanical brake action at stalling setup	0 to 10000	1 ms	0	P	S	T

You can set up the time from when the brake release signal (BRK-OFF) turns off to when the motor is de-energized (Servo-free), when the motor turns to Servo-OFF while the motor is at stall.

Pr4.38	Mechanical brake action at running setup	Range	Unit	Default		elated
		0 to 10000	1 ms	0	P	T F

You can set up time from when detecting the off of Servo-ON input signal (SRV-ON) is to when external brake release signal (BRK-OFF) turns off, while the motor turns to servo off during the motor in motion.

Default: []

Pr4.39

Brake release speed setup

Range	Unit	Default	Related control mode		
30 to 3000	$\mathrm{r} / \mathrm{min}$	30	P	S	T

Set up the speed timing of brake output checking during operation.

Pr4.40	Selection of alarm output 1	Range	Unit	Default	Re	lated ol mode
		0 to 10	-	0	P S	T F
Pr4.41	Selection of alarm output 2	Range	Unit	Default	Relatedcontrol mode	
		0 to 10	-	0	P S	T F

Select the type of alarm issued as the alarm output 1 or 2.

Setup value	Alarm	Content
$[0]$	-	ORed output of all alarms.
1	Overload protection	Load factor is 85% or more the protection level.
2	Over-regeneration alarm	Regenerative load factor is 85% or more the protection level.
3	Battery alarm	Battery voltage is 3.2 V or lower.
4	Fan alarm	Fan has stopped for 1 sec. ${ }^{* 1}$
5	Encoder communication alarm	The number of successive encoder communication errors exceeds the specified value.
6	Encoder overheat alarm	The encoder detects overheat alarm.
7	Oscillation detection alarm	Oscillation or vibration is detected.
8	Lifetime detection alarm	Life expectancy of capacitor or fan becomes short.
9	External scale error alarm	The external scale detects the alarm.
10	External scale communication alarm	The number of successive external scale communication errors exceeds the specified value.

*1 The upper fan on the H -frame driver stops during servo OFF to save energy. This is normal.
Related page $\cdots:$: For detailed description of alarm types, refer to P.3-46, 47.

Range	Unit	Default	Related control mode	
0 to 262144	Command unit	10	P	F

The INP2 turns ON whenever the positional deviation is lower than the value set up in this parameter, without being affected by Pr4.32 Positioning complete output setup. (Presence/ absence of positional command is not related to this judgment.)

Caution $\cdots \%$ The command unit is used as the default unit but can be replaced by the encoder unit by using Pr5.20. Positioning unit selection. Note that when the encoder unit is used, unit of Pr0.14 Positional deviation excess setup is also changed.

Note $\cdots \%_{0}$ For description of "command unit" and "encoder unit", refer to P.4-48 "Pr5.20".

1. Details of parameter
 [Class 5] Enhancing setting

Default: []

Pr5.00	2nd numerator of electronic gear	Range	Unit	Default	Relatedcontrol mode	
		0 to 2^{30}	-	0	P	F
Pr5.01	3rd numerator of electronic gear	Range	Unit	Default	$\begin{array}{c\|} \text { Related } \\ \text { control mode } \\ \hline \end{array}$	
		0 to 2^{30}	-	0	P	F
Pr5.02	4th numerator of electronic gear	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \\ \hline \end{gathered}$	
		0 to 2^{30}	-	0	P	F

Set the 2nd to 4th numerator of division/multiplication operation made according to the command pulse input.
This setup is enabled when Pr0.08 command pulse counts per one motor revolution $=0$ or full closed controlling.
When the setting value is 0 for positioning controlling, encoder resolution is set as a numerator.
When the setting value is 0 for full closed controlling, both numerator and denominator are set to 1 .

Pr5.03 * Denominator of pulse output division

Range	Unit	Default	Related control mode	
0 to 262144	-	0	P	S

For details, refer to P.4-10.

Pr5.04 *
Over-travel inhibit input setup

Range	Unit	Default	Renated control mode	
0 to 2	-	1	P	S

Set up the operation of the run-inhibition (POT, NOT) inputs.

Setup value	Operation
0	POT \rightarrow Inhibit positive direction travel NOT \rightarrow Inhibit negative direction travel
$[1]$	Disable POT, NOT
2	POT or NOT input activates Err38.0 Run-inhibition input protection.

Pr5.05 *	Sequence at over-travel inhibit	Range	Unit	Default	Relatedcontrol mode		
		0 to 2	-	0	P	S T	T

When Pr5.04 Over-travel inhibition $=0$, specify the status during deceleration and stop after application of the over-travel inhibition (POT, NOT).
<Details of Pr5.05 (Sequence at over-travel inhibit)>

Pr5.04	Pr5.05	During deceleration	After stalling	Deviation counter content
0	$[0]$	Dynamic brake action	Torque command=0 towards inhibited direction	Hold
	1	Torque command=0 towards inhibited direction	Torque command=0 towards inhibited direction	Hold
	2	Emergency stop	Command=0 towards inhibited direction	Clears before/ after deceleration

[^51]Default: []

Range	Unit	Default	Rentated control mode		
0 to 9	-	0	P	S	T

Specify the status during deceleration and after stop, after servo-off.

Setup value	During deceleration *3	After stalling	Positional deviation/ external scale deviation
[0]	Dynamic Brake (DB) action	Dynamic Brake (DB) action	Clear *4
1	Free-run (DB OFF)	Dynamic Brake (DB) action	Clear *4
2	Dynamic Brake (DB) action	Free-run (DB OFF)	Clear *4
3	Free-run (DB OFF)	Free-run (DB OFF)	Clear *4
4	Dynamic Brake (DB) action	Dynamic Brake (DB) action	Hold *2
5	Free-run (DB OFF)	Dynamic Brake (DB) action	Hold *2
6	Dynamic Brake (DB) action	Free-run (DB OFF)	Hold *2
7	Free-run (DB OFF)	Free-run (DB OFF)	Hold *2
8	Emergency stop *1	Dynamic Brake (DB) action	Clear *4
9	Emergency stop *1	Free-run (DB OFF)	Clear *4

*1 Emergency stop refers to a controlled immediate stop with servo-on. The torque command value is limited during this process by Pr5.11 Emergency stop torque setup.
*2 If the positional command is kept applied or the motor is kept running with servo-off condition, positional deviation is accumulated, causing Err24.0 Excess positional deviation protection to be issued. If the servo is turned ON while the position or external scale is significantly deviating, the motor may rapidly operate to reduce the deviation to 0 . Remember these requirements if you want to maintain the positional deviation/external scale deviation.
*3 Deceleration period is the time required for the running motor to speed down to $30 \mathrm{r} / \mathrm{min}$. Once the motor speed drops below $30 \mathrm{r} / \mathrm{min}$, it is treated as in stop state regardless of its speed.
*4 Positional deviation/external scale deviation is always cleared to 0.
Caution. \cdots. If an error occurs during servo-off, follow Pr5.10 Sequence at alarm. If the main power is turned off during servo-off, follow Pr5.07 Sequence during main power interruption.
Reated page- - : Refer to P.2-63, "Timing Chart"-Servo-ON/OFF action while the motor is at stall" of Preparation as well.

Pr5.07

Sequence at main power OFF

Range	Unit	Default	Related control mode		
0 to 9	-	0	P	S	T

Specify the status during deceleration after main power interrupt or after stoppage.
The relationship between the setup value of Pr5.06 and the operation and process at deviation counters is the same as that for Pr5. 07 (sequence at main power OFF).

Caution....s. If an error occurs with the main power supply turned off, Pr5.10 Sequence at alarm is applied to the operation.
When the main power supply is turned off with servo-on state, Err13.1 Main power undervoltage error occurs if Pr5.08 LV trip selection with main power off $=1$, and the operation follows Pr5.10 Sequence at alarm.

- A parameter is designated as follows: Class Pro. 00 Parameter No.
- For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
Related page $\cdots \div$
- P.3-30... "Inputs and outputs on connector X4"

Default: []

		Range	Unit	Default	Related control mode
Pr5.08	LV trip selection at main power OFF	0 to 1	-	1	P S T F

You can select whether or not to activate Err13.1 (Main power under-voltage protection) function while the main power shutoff continues for the setup of Pr5.09 (Main power-OFF detection time).

Setup value	Action of main power low voltage protection
0	When the main power is shut off during Servo-ON, Err13.1 will not be triggered and the driver turns to Servo-OFF. The driver returns to Servo-ON again after the main power resumption.
$[1]$	When the main power is shut off during Servo-ON, the driver will trip due to Err13.1 (Main power low voltage protection).

Caution \cdots : This parameter is invalid when Pr5.09 (Detection time of main power OFF)=2000. Err13.1 (Main power under-voltage protection) is triggered when setup of P5.09 is long and P-N voltage of the main converter falls below the specified value before detecting the main power shutoff, regardless of the $\operatorname{Pr} 5.08$ setup.

Pr5.09 *

 Detection time of main power off| Range | Unit | Default | Related
 control mode | |
| :---: | :---: | :---: | :---: | :---: |
| 70 to 2000 | 1 ms | 70 | P | S |

You can set up the time to detect the shutoff while the main power is kept shut off continuously. The main power off detection is invalid when you set up this to 2000.

Pr5.10
Sequence at alarm

Range
0 to 7

Unit
Defaut

Related
sequence at alarm
Specify the status during deceleration and after stop, after occurrence of alarm.

Setup value	During deceleration *3	After stalling	Positional deviation/ external scale deviation
[0]	Dynamic Brake (DB) action	Dynamic Brake (DB) action	Hold *1
1	Free-run (DB OFF)	Dynamic Brake (DB) action	Hold *1
2	Dynamic Brake (DB) action	Free-run (DB OFF)	Hold *1
3	Free-run (DB OFF)	Free-run (DB OFF)	Hold *1
4	Action A: Emergency stop Action B: DB action *2	Dynamic Brake (DB) action	Hold *1
5	Action A: Emergency stop Action B: DB OFF *2	Dynamic Brake (DB) action	Hold *1
6	Action A: Emergency stop Action B: DB action ${ }^{* 2}$	Free-run (DB OFF)	Hold *1
7	Action A: Emergency stop Action B: DB OFF *2	Free-run (DB OFF)	Hold *1

*1 Positional deviation/external scale deviation is maintained during alarm condition and will be cleared when the alarm is cancelled.
*2 Action of A/B: When an alarm requiring emergency stop occurs, the action A is selected when the setup value in the table is set within the range 4 to 7 , causing emergency stop of operation. When an alarm not requiring emergency stop occurs, it triggers dynamic braking (DB) specified by action B , or free-running.
*3 Deceleration period is the time required for the running motor to speed down to $30 \mathrm{r} / \mathrm{min}$.

Default: []
Pr5.11
Torque setup for emergency stop

| Range | Unit | Default | Rentated
 control mode |
| :---: | :---: | :---: | :---: | :---: | :---: |$|$| 0 to 500 | $\%$ | 0 | P |
| :---: | :---: | :---: | :---: |

Set up the torque limit at emergency stop.
Note When setup value is 0 , the torque limit for normal operation is applied.

Pr5. 12
Over-load level setup

Range	Unit	Default	Related control mode	
0 to 500	$\%$	0	P	S

- You can set up the over-load level. The overload level becomes 115 [\%] by setting up this to 0 .
- Use this with 0 setup in normal operation. Set up other value only when you need to lower the over-load level.
- The setup value of this parameter is limited by 115[\%] of the motor rating.

Pr5.13

Over-speed level setup

| Range | Unit | Default | Related
 control |
| :---: | :---: | :---: | :---: | :---: |
| 0 mode | | | |

- If the motor speed exceeds this setup value, Err26.0 Over-speed protection occurs.
- The over-speed level becomes 1.2 times of the motor max. speed by setting up this to 0 .

Pr5. 14
Motor working range setup

Range	Unit	Default	Related control		
0 to 1000	0.1 revolution	10	P	S	T

- You can set up the movable range of the motor against the position command input range.
- When the motor movement exceeds the setup value, software limit protection of Err34.0 will be triggered.

Pr5.15 *	I/F reading filter

Range	Unit	Default	Related control mode		
0 to 3	-	0	P	S	T

Select reading period of the control input signal.

Setup value	Reading period of the signal.
$[0]$	0.166 ms
1	0.333 ms
2	1 ms
3	1.666 ms

Exclude deviation counter clear input (CL) and command pulse inhibit input (INH).

[^52]Default: []
Pr5.16 * Alarm clear input setup

Range	Unit	Default	Related control mode		
0 to 1	-	0	P	S	T

Select alarm clear input (A-CLR) recognition time.

Setup value	Recognition time
$[0]$	120 ms
1	To Pr5.15 IF reading filter

Pr5.17
Counter clear input mode

Range	Unit	Default	Renated control mode	
0 to 4	-	3	P	F

You can set up the clearing conditions of the counter clear input signal.

Setup value	Clear condition
0	Invalid
1	Clear at a level (no reading filter)
2	Clear at a level (with reading filter)
$[3]$	Clear at an edge (no reading filter)
4	Clear at an edge (with reading filter)

Note
For signal width/timing requiring the deviation counter input, refer to P.3-38.

Pr5. 18

Invalidation of command pulse inhibit input	Range	Unit	Default	Related control mode	
	0 to 1	-	1	F	F

Select command pulse inhibit input enable/disable.

Setup value	INH input
0	Valid
$[1]$	Invalid

Select command pulse inhibit input enable/disable signal reading period. When the status of several signals read during the predetermined reading period are same, update the signal status.

Setup value	Signal reading period
$[\mathbf{0}]$	0.166 ms
1	0.333 ms
2	1 ms
3	1.666 ms
4	0.166 ms (no check for multiple coincidence)

Caution \cdots. Longer reading period protects against operation error due to noise but decreases response to input signal.

- For parameters which No. have a suffix of "*", changed contents will be validated when you turn on the control power.
Related page? • P. 3 -30... "Inputs and outputs on connector X4" • P. 6 - 2 "Protective Function"

Pr5.21	Selection of torque limit	Range	Unit	Default	Related	
		0 to 6	-	1	P S	S F

You can set up the torque limiting method.

Setup value	Positive direction	Negative direction
0	P-ATL (0 to 10V)	N-ATL (-10 to 0V)
[1]	1st torque limit (Pr0.13)	
2	1st torque limit (Pr0.13)	2nd torque limit (Pr5.22)
3	TL-SEL OFF $\rightarrow 1$ st torque limit (Pr0.13) TL-SEL ON \rightarrow 2nd torque limit (Pr5.22)	
4	P-ATL (0 to 10V)	N-ATL (0 to 10V)
5	P-ATL (0 to 10V)	
6	TL-SEL OFF	
	1st torque limit (Pr0.13)	2nd torque limit (Pr5.22)
	TL-SEL ON	
	External input positive direction torque limit (Pr5.25)	External input negative direction torque limit (Pr5.26)

Pr5. 22

2nd torque limit

| Range | Unit | Default | Related
 control |
| :---: | :---: | :---: | :---: | :---: |
| 0 mode | | | |

You can set up the 2nd limit value of the motor output torque.
The value of parameter is limited to the maximum torque of the applicable motor.
Note \cdots For details of torque limit value, refer to P.2-82.

A parameter is designated as follows: Class PrO.00 Parameter No.

- For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
Related page ...:
- P.2-82 "Setup of Torque Limit" • P.3-30 ... "Inputs and outputs on connector X4" • P.6-2 "Protective Function"

Default: []

Pr5.23	Torque limit switching setup 1	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
		0 to 4000	ms/100\%	0	P S	F

Specify the rate of change (slope) from 1st to 2nd during torque limit switching.

Pr5. 25	External input positive direction torque limit	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$	
		0 to 500	\%	500	P S	F
	Set up positive direction torque limit upon receiving TL-SEL with Pr5.21 Selection of torque limit set at 6 . The value of parameter is limited to the maximum torque of the applicable motor.					
Note	For details of torque limit value, refer to P.2-82.					

Pr5.26	External input negative direction torque limit	Range	Unit	Default	$\begin{array}{\|c\|} \hline \text { Related } \\ \text { control mode } \\ \hline \end{array}$	
		0 to 500	\%	500	P S	F
	Set up negative direction torque limit upon receiving TL-SEL with Pr5.21 Selection of torque limit set at 6 . The value of parameter is limited to the maximum torque of the applicable motor.					
Note ...\%	For details of torque limit value, refer to P.2-82.					

Pr5.27	Input gain of analog torque limit	Range	Unit	Default	Related control mode	
		10 to 100	$0.1 \mathrm{~V} / 100 \%$	30	P	S

Default: []

Pr5.28 *
 LED initial status

Range	Unit	Default	Related control	
0 to 35	-	1	P	S

You can select the type of data to be displayed on the front panel LED (7 segment) at the initial status after power-on.

				prox	2 sec) during initialization
Setup value	Content	Setup value	Content	Setup value	Content
0	Positional command deviation	12	Error factor and reference of history	24	Encoder positional deviation [Encoder unit]
[1]	Motor speed	13	Alarm Display	25	External scale deviation [External scale unit]
2	Positional command speed	14	Regenerative load factor	26	Hybrid deviation [Command unit]
3	Velocity control command	15	Over-load factor	27	Voltage across PN [V]
4	Torque command	16	Inertia ratio	28	Software version
5	Feedback pulse sum	17	Factor of no-motor running	29	Driver serial number
6	Command pulse sum	18	No. of changes in I/O signals	30	Motor serial number
8	External scale feedback pulse sum	20	Absolute encoder data	31	Accumulated operation time
9	Control mode	21	Absolute external scale position	32	Automatic motor recognizing function
10	I/O signal status	22	No. of encoder/ external scale communication errors monitor	33	Temperature information
11	Analog input value	23	Communication axis address	35	Safety condition monitor

Related page.. $\because:$ For details of display, refer to P.2-86 "How to Use the Front Panel" of Preparation.

Pr5.29 *	Baud rate setup of RS232 communication	Range	Unit	Default	Relatedcontrol	
		0 to 6	-	2	P	S T

You can set up the communication speed of RS232.
Note For baud rate setup value, refer to RS485 setup.

Pr5.30 *

| Baud rate setup of |
| :--- | :--- |
| RS485 communication |

Range	Unit	Default	Rentated control mode		
0 to 6	-	2	P	S	T

You can set up the communication speed of RS485.

Setup value	Baud rate
0	2400 bps
1	4800 bps
$[2]$	9600 bps
3	19200 bps

Setup value	Baud rate
4	38400 bps
5	57600 bps
6	115200 bps

Baud rate error is $\pm 0.5 \%$ for 2400 to 38400 bps , and $\pm 2 \%$ for 57,600 to $115,200 \mathrm{bps}$.

Note ... Only for position control type is not provided with X2 (Communication connector).

Pr5.31*	Axis address	Range	Unit	Default	Relatedcontrol mode	
		0 to 127	-	1	P S	T F

During communication with the host (e.g. PC) to control multiple shafts, the shaft being accessed by the host should be identified.
Note When using RS232/RS485, the maximum valid value is 31 .

Set the maximum number of pulses to be used as command pulse input. If the number of input pulses exceeds the setup value $\times 1.2$, Err27.0 Command pulse input frequency error protection occurs.
Caution \cdots. The number of input pulses received by the driver is always checked. If the frequency of the received pulse is higher than the upper limit of the setting, input pulses are not accurately detected.
By selecting a value lower than 1000, a digital filter of the specification shown below is enabled against the command pulse input.

Pr5.32 setting range	Digital filter
250 to 499	200 ns 2-time reading
500 to 999	100 ns 2-time reading
1000 or more	No reading (thru)

Range
-

Unit	
-	

Fixed to 4.

Pr5.35 *	Front panel lock setup	Range	Unit	$\begin{gathered} \hline \text { Default } \\ \hline 0 \end{gathered}$		
		0 to 1	-			
Lock the operation on the front panel.		Setup value	Content			
		[0]	No limit on the front panel operation			
		1	Lock the operation on the front panel			

[^53]
4
 Setup
 1. Details of parameter
 [Class 6] Special setting

Default: []
Pr6.00

Analog torque feed forward conversion	Range	Unit	Default	Related		
gain	0 to 100	0.1V/100\%	0	P	S	

- Set the input gain of analog torque feed forward. 0 to 9 are invalid.

<Usage example of Analog torque feed forward>

- Setting bit 5 place of Pr6.10 Function expansion setup to 1 enables the analog torque feed forward. When the analog input 3 is used by another function (e.g. analog torque limit), the function becomes invalid.
- The voltage (V) applied to the analog input 3 is converted to the torque via Pr6.00 Analog torque feed forward conversion gain setup and added to the torque command (\%): in CCW direction if it is positive voltage or in CW direction if negative.
- The conversion of analog input 3, input voltage [V], to the torque command [\%] to the motor may be expressed mathematically as follows:

$$
\text { Torque command }(\%)=100 \times \text { input voltage }(\mathrm{V}) /(\operatorname{Pr6} 00 \text { setup value } \times 0.1)
$$

Pr6.02	Velocity deviation excess setup	Range	Unit	Default	Related control mode
	0 to 20000	$\mathrm{r} / \mathrm{min}$	0	P	

Pr6.04	JOG trial run command speed	Range	Unit	Default	Relatedcontrol mode		
		0 to 500	$\mathrm{r} / \mathrm{min}$	300	P	S T	

Set up the command speed used for JOG trial run (velocity control).
Related page $\cdots \cdots$ Before using, refer to P.4-59 Preparation Trial Run.

Pr6.05 Position 3rd gain valid time

Range	Unit	Default	Renated contro lode	
0 to 10000	0.1 ms	0	P	F

- Set up the time at which 3rd gain becomes valid.
- When not using this parameter, set Pr6.05 to 0 and Pr6.06 to 100.
- This is valid for only position control/full-closed control.

Pr6.06 Position 3rd gain scale factor

Range	Unit	Default	Related control mode	
50 to 1000	$\%$	100	P	F

- Set up the 3rd gain by a multiplying factor of the 1st gain:
- 3rd gain $=1$ st gain \times Pr6.06/100

[^54][Class 6] Special setting

Default: []
Pr6.07 Torque command additional value

Range	Unit	Default	contrated		
-100 to 100	$\%$	0	P	S	F

- Set up the offset load compensation value usually added to the torque command in a control mode except for the torque control mode.
- Update this parameter when the vertical axis mode for real time auto-tuning is valid.

Pr6.08

Positive direction torque compensation value

Range
-100 to 100

Unit
$\%$

- Set up the dynamic friction compensation value to be added to the torque command when forward positional command is fed.
- Update this parameter when the friction compensation mode for real time auto-tuning is valid.

Pr6.09
Negative direction torque compensation

Range
-100 to 100

Unit
$\%$

Defau
0

| Related | |
| :---: | :---: | :---: |
| control mode | |
| P | F |

- Set up the dynamic friction compensation value to be added to the torque command when negative direction positional command is fed.
- Update this parameter when the friction compensation mode for real time auto-tuning is valid.

Pr6.10	Function expansion setup		Range	Unit	$\begin{gathered} \text { Default } \\ \hline 0 \\ \hline \end{gathered}$	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$
			0 to 63	-		P S T
Set up the function in unit of bit.						
		Function	Setup value			
			[0]		1	
	bit 0	Speed observer	Invalid		Valid	
	bit 1	Disturbance observer	Invalid		Valid	
	bit 2	Disturbance observer operation setup	Always valid		Valid only wh is sele	1st gain d.
	bit 3	Inertia ratio switching	Invalid		Valid	
	bit 4	Current response improvement	Invalid		Valid	
	bit 5	Analog torque FF	Invalid		Valid	

* bit $0=$ LSB

Pr6.11

Current response setup

Range	Unit	Default	Related control mode	
50 to 100	$\%$	100	P	S

Fine tune the current response with respect to default setup (100\%).

[^55]Default: []
Pr6.13
2nd Inertia ratio

Range	Unit	Default	Related control mode		
0 to 10000	$\%$	250	P	S	T

Set 2nd inertia ratio.
You can set up the ratio of the load inertia against the rotor (of the motor) inertia.

$$
\text { Pr6.13 }=(\text { load inertia/ rotor inertia) } \times 100[\%]
$$

Caution.․․ If the inertia ratio is correctly set, the setup unit of Pr1.01 and Pr1. 06 becomes (Hz). When the inertia ratio of Pr0.04 is larger than the actual, the setup unit of the velocity loop gain becomes larger, and when the inertia ratio of Pr0.04 is smaller than the actual, the setup unit of the velocity loop gain becomes smaller.

Pr6.14

Emergency stop time at alarm

Range	Unit	Default	Rentated control mode		
0 to 1000	1 ms	200	P	S	T

Set up the time allowed to complete emergency stop in an alarm condition. Exceeding this time puts the system in alarm state.
When setup value is 0 , immediate stop is disabled and the immediate alarm stop is enabled.

Pr6. 15
2nd over-speed level setup

Range
0 to 20000

Unit	Default
r/min	0

Related | control mode |
| :--- |
| P S T F |

When the motor speed exceeds this setup time during emergency stop sequence in an alarm condition, Err26.1 2nd overspeed protection will be activated.
The over-speed level becomes 1.2 times of the motor max. speed by setting up this to 0 .

Pr6	Front panel parameter writing selection	Range	Unit	Default	Related ontrol mode		
Pro.		0 to 1	-	0	P	S T	

Specify the EEPROM writing procedure when parameter is edited form the front panel.

Setup value	Writing
$[0]$	Do not write to EEPROM at the same time
1	Write to EEPROM at the same time

Range	Unit	Default	Related control mode			
0 to 100	0.1 s	0	P	S	T	F

Set up the standard initialization time ($1.5 \mathrm{~s}+\mathrm{a}$) after power-up.

[^56][Class 6] Special setting

Default: []
Pr6.19 * \quad Encoder Z phase setup

Range	Unit	Default	Related control mode		
0 to 32767	pulse	0	P	S	T

If the number of output pulses per one motor revolution after division of pulse output is not an integer, fine adjust the width of encoder Z phase.

Pr6.20 * Z-phase setup of external scale

Range	Unit	Default	Related control mode	
0 to 400	$\mu \mathrm{~s}$	0		F

Set up the Z phase regenerative width of external scale in unit of time. Even if the width of Z phase signal cannot be detected because the width equivalent of the travel distance from the external scale is too short, the Z phase signal will be output for at least the period set to this parameter.

Pr6.21*
Serial absolute external scale Z phase

Range
0 to 2^{28}

Unit
pulse

Defaul

Related control mode		

Full-closed control using serial absolute external scale. When outputting pulses by using the external scale as the source of the output, set the Z phase output interval in units of A phase output pulses of the external scale (before multiplied by 4).

Setup value	Content
$[0]$	Output Z phase only at absolute 0 position of external scale.
1 to 268435456	After the power is fed to the driver, the Z phase, as it crosses the zero at the absolute position of external scale, is output in synchronous with the A phase. Subsequently, the Z phase is output at the A phase output pulse intervals set to this parameter.

Pr6.22 *
A, B phase external scale pulse output method selection

Range	Unit	Default	Related control mode	
0 to 1	-	0		F

Select the pulse regeneration method of A, B and Z parallel external scale.

Setup value	Regenerating method
$[0]$	Directly output the signals from A, B and Z parallel external scales.
1	Output A and B phase signals recovered from A, B and Z parallel external scales. Z-phase is output directly.

Pr6.23 Disturbance torque compensating gain

Range	Unit	Default	Related control mode	
-100 to 100	$\%$	0	P	S

- Set up -100 to 100% compensating gain against disturbance torque.
- After setting up Pr6.24, increase Pr6.23.

The disturbance suppressing capability increases by increasing the gain, but it is associated with increasing volume of operation noise.
This means that well balanced setup can be obtained by adjusting Pr6.24 and Pr6.23.

[^57]Default: []
Pr6. 24
Disturbance observer filter

Range	Unit	Default	Related control mode		
0 to 2500	0.01 ms	53	P	S	

- Set up the filter time constant according to the disturbance torque compensation.
- First, set up Pr6.24 to a larger value and check the operation with Pr6.23 Disturbance torque compensating gain set to a low value, and then gradually decrease the setup value of Pr6.24. A low filter setup value assures disturbance torque estimation with small delay and effectively suppresses effects of disturbance. However, this results in larger operation noise. Well balanced setup is required.

Pr6 27 *	Alarm latch time selection	Range	Unit	Default	Relatedcontrol mode		
		0 to 10	-	5	P	S T	

Set up the latch time.

Setup value	Content	
0	Latch time: infinite	
1	Latch time	1 [s]
2		2 [s]
3		3 [s]
4		4 [s]
[5]		5 [s]
6		6 [s]
7		7 [s]
8		8 [s]
9		9 [s]
10		10 [s]

Pr6.31 Real time auto tuning estimation speed

Range	Unit	Default	Related control mode	
0 to 3	-	1	P	S

Set up the load characteristics estimation speed with the real time auto tuning being valid. A higher setup value assures faster response to a change in load characteristics but increases variations in disturbance estimation. Result of estimation is saved to EEPROM every 30 minutes.

Setup value	Mode	Description
0	No change	Stop estimation of load characteristics.
$[1]$	Almost constant	Response to changes in load characteristics in every minute.
2	Slower change	Response to changes in load characteristics in every second.
3^{*}	Faster change	Obtain best suitable estimation in response to changes in load characteristics.

* If the automatic oscillation detection is enabled by the support software PANATERM, the setup value 3 is used.

Note ... A parameter is designated as follows: Class Pro.00 Parameter No.

- For parameters which No. have a suffix of "*", changed contents will be validated when you turn on the control power.
- The setup support software PANATERM can be downloaded from our web site.

Related page ...

- P.3-30... "Inputs and outputs on connector X4"

Pr6 32	R	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \end{gathered}$		
	Real time auto tuning custom setup	-32768 to 32767	-	0	P	S T	T F

When the operation mode of real time auto tuning is set to the customize (Pr0.02 = 6), set the automatic adjusting function as shown below.

Bit	Content		Description			
1 to 0	Load characteristics estimation *	If the load characteristics estimation is disabled, the current setup cannot be changed even if the inertia ratio is updated according to the estimated value. When the torque compensation is updated by the estimated value, it is cleared to 0 (invalid).				
3 to 2	Inertia ratio update	Set up update estimation of P	to be made based on result of Pr0. 04 Inertia ratio. Function Use the current setup. Update by the estimated valu	f the load	charact	ristics
6 to 4	Torque compensation	Set up the update to be made according to the results of load characteristics estimation of Pr6.07 Torque command additional value, Pr6.08 positive direction torque compensation value and Pr6.09 negative direction torque compensation value.				
		Setup value	Function	Compensation setup		
		[0]	Use current setup	Pr6.07	Pr6.08	Pr6.09
		1 D	Disable torque compensation	0 clear	0 clear	0 clear
		2	Vertical axis mode	Update	0 clear	0 clear
		3	Friction compensation (low)	Update	Low	Low
		4	Friction compensation (middle)	Update	Middle	Middle
		5	Friction compensation (high)	Update	High	High
7	Stiffness setup	Enable/disable the basic gain setup to be made according to Pr0.03 Real time auto tuning mechanical stiffness selection.				
		Setup value	Function			
		[0]	Disable			
		1	Enable			
8	Fixed parameter setup	Enable/disable the change of parameter that is normally set at a fixed value.				
		Setup value	Function			
		[0]	Use the current setup.			
		1	Set to a fixed value.			
10 to 9	Gain switching setup	Select the gain switching related parameter to be used when the real time auto tuning is enabled.				
		Setup value	Function			
		[0]	Use the current setup.			
		1	Disable gain switching.			
		2	Enable gain switching.			

Caution...\%. This parameter should be setup bit by bit. To prevent setting error, use of the setup support software is recommended when editing parameter.

<Setup procedure of bitwise parameter>

When setting parameter to a value other than 0 , calculate the setup value of Pr6.32 in the following procedure.

1) Identify the LSB of the setup.

Example: LSB of the torque compensation function is 4.
2) Multiply the setup value by power of 2 (LSB).

Example: To set the torque compensation function to friction compensation (middle): $2^{4} \times 4=64$.
3) Perform steps 1) and 2) for every setups, sum up the values which are to be Pr6.32 setup value.

Example: Load characteristics measurement = enable, inertia ratio update = enable, torque compensation $=$ friction compensation (middle), stiffness setup $=$ enable, fixed parameter $=$ set to a fixed value, gain switching setup $=$ enable, then,

$$
2^{0} \times 1+2^{2} \times 1+2^{4} \times 4+2^{7} \times 1+2^{8} \times 1+2^{9} \times 2=1477
$$

| Pr6.34 | Hybrid vibration suppression gain | Range | Unit | Default | Related
 control mode |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| | | 0 to 30000 | $0.1 / \mathrm{s}$ | 0 | F |

Set up the hybrid vibration suppression gain for full-closed controlling.
First set it to the value identical to that of poison loop gain, and then fine tune as necessary.

| Pr6.35 | Hybrid vibration suppression filter | Range | Unit | Default | Related
 control mode |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| | | 0 to 6400 | 0.01 ms | 10 | F |

Set up the time constant of the hybrid vibration suppression filter for full-closed controlling. While driving under full-closed control, gradually increase the setup value and check changes in the response.

Pr6.37	Oscillation detecting level	Range	Unit	Default	Related control mode
		0 to 1000	0.1\%	0	P S T F

Set up the oscillation detecting level.
Upon detection of a torque vibration whose level is higher than this setup value, the oscillation detection alarm will be issued.

Pr6.38*	Alarm mask setup	Range	Unit	Default	$\begin{gathered} \text { Related } \\ \text { control mode } \\ \hline \end{gathered}$	
		-32768 to 32767	-	0	P S	T F
	Set up the alarm detection mask. Placing 1 to the corresponding bit position disables detection of the alarm condition.					

Pr6.39	For manufacturer's use	Range	Unit	Default	Related control mode
		-	-	0	-

Fixed to 0.

[^58]
2.Trial Run (JOG run)
 Inspection Before Trial Run

(1) Inspection on wiring

- Miswiring ? (Especially power input and motor output)
- Short or grounded ?
- Loose connection?
(2) Confirmation of power supply and voltage
- Rated voltage ?

(6) Turn to Servo-OFF after finishing the trial run by pressing .
- The figure above shows connections on velocity, position, torque and full-closed mode driver.
- Only for position control type is not provided with X2 (Communication connector), X3 (Safety function connector), X5 (External scale connector).

2.Trial Run (JOG run)
 Trial Run by Connecting the Connector X4

Trial Run (JOG run) at Position Control Mode

(1) Connect the Connector X4.
(2) Enter the power (DC12 to 24 V) to control signal (COM+, COM-)
(3) Enter the power to the driver.
(4) Confirm the default values of parameters.
(5) Match to the output format of the host controller with Pr0.07 (Command pulse input mode setup).
(6) Write to EEPROM and turn off/on the power (of the driver).
(7) Connect the Servo-ON input (SRV-ON) and COM- (Connector X4, Pin-41) to bring the driver to Servo-ON status and energize the motor.
(8) Enter low frequency from the host controller to run the motor at low speed.
(9) Check the motor rotational speed at monitor mode whether, rotational speed is as per the setup or not, and the motor stops by stopping the command (pulse) or not.
(10) If the motor does not run correctly, refer to P.2-100, "Display of Factor for No-Motor Running" of Preparation.

- Wiring Diagram

- Parameter

Pr No.	Title	Setup value
0.01	Control mode setup	0
5.04	Over-travel inhibit input setup	1
0.05	Selection of command pulse input	$0 / 1$
0.07	Command pulse input mode setup	1
5.18	Invalidation of command pulse inhibit input	1
5.17	Counter clear input mode	2

- Input signal status

No.	Title of signal	Monitor display
0	Servo-ON	+A

Trial Run (JOG run) at Velocity Control Mode

1) Connect the Connector $X 4$.
2) Enter the power (DC12 to 24V) to control signal (COM+, COM-)
3) Enter the power to the driver.
4) Confirm the default values of parameters.
5) Connect the Servo-ON input (SRV-ON, Connector X4, Pin-29) and COM- (Connector X4, Pin-14) to turn to Servo-ON and energize the motor.
6) Close the speed zero clamp input (ZEROSPD) and apply DC voltage between velocity command input, SPR (Connector X4, Pin-14) and GND (Connector X4, Pin-15), and gradually increase from OV to confirm the motor runs.
7) Confirm the motor rotational speed in monitor mode.

- Whether the rotational speed is per the setup or not.
- Whether the motor stops with zero command or not.

8) If the motor does rotate at a micro speed with command voltage of 0 .
9) When you want to change the rotational speed and direction, set up the following parameters again.
Pr3.00: Speed setup, Internal/External switching
Pr3.01: Speed command rotational direction selection
Refer to P.4-25, 26 "Parameter Setup" (Parameters for
Pr3.03: Reversal of speed command input Velocity/Torque Control)
10)If the motor does not run correctly, refer to P.2-100, "Display of Factor for No-Motor Running" of Preparation.

- Wiring Diagram

Run with ZEROSPD switch close, and Stop with open

In case of bi-directional operation (Positive/Negative), provide a bipolar power supply, or use with $\operatorname{Pr} 3.15=3$. In case of one-directional operation

- Parameter

Pr No.	Title	Setup value
0.01	Control mode setup	1
5.04	Over-travel inhibit input setup	1
3.15	Speed zero-clamp function selection	1
3.00	Speed setup, Internal/External switching	Set up as required
3.01	Speed command rotational direction selection	
3.02	Input gain of speed command	
3.03	Reversal of speed command input	
4.22	Analog input 1 (Al1) offset setup	
4.23	Analog input 1 (Al1) filter	

- Input signal status

No.	Title of signal	Monitor display
0	Servo-ON	+A
5	Speed zero clamp	-

[^59]
Trial Run (JOG run) at Torque Control Mode

1) Connect the Connector $X 4$.
2) Enter the power (DC12-24V) to control signal (COM+, COM-)
3) Enter the power to the driver.
4) Confirm the default values of parameters.
5) Set a lower value to Pr3.07 (4th speed of speed setup).
6) Energize the motor by connecting the Servo-ON input (SRV-ON, Connector X4, Pin-29) and COM- (Pin-41 of Connector X4) to turn to Servo-ON status.
7) Confirm that the motor runs as per the setup of Pr3.07 by applying DC voltage (positive/negative) between the torque command input (Pin-14 of Connector X4) and GND (Pin-15 of Connector X4).
8) If you want to change the torque magnitude, direction and velocity limit value against the command voltage, set up the following parameters.
Pr3.19: Input gain of torque command \quad Refer to P.4-29, 30, "Parameter Setup"
Pr3.20: Input reversal of torque command - (Parameters for Velocity/Torque Con-
Pr3.21: Speed limit value 1 trol)
9) If the motor does not run correctly, refer to P.2-100, "Display of factor for No-motor running" of Preparation.

- Wiring Diagram

C

ro ea olar o ers 1 . ase o o e a r

- Parameter

Pr No.	Title	Setup value
0.01	Control mode setup	2
5.04	Over-travel inhibit input setup	1
3.15	Speed zero-clamp function selection	0
3.17	Selection of torque command	0
3.19	Input gain of torque command	Set up as required
3.20	Input reversal of torque command	
3.21	Speed limit value 1	lown y

- Input signal status

No.	Title of signal	Monitor display
0	Servo-ON	+A
5	Speed zero clamp	-

2.Trial Run (JOG run)
 Setup of Motor Rotational Speed and Input Pulse Frequency

Input pulse frequency (pps)	Motor rotational speed (r/min)	Pr0.08	
		17-bit	20-bit
2M	3000	$\begin{gathered} 2^{17} \\ \hline \hline 40000 \end{gathered}$	$\begin{gathered} \hline 2^{20} \\ \hline \hline 40000 \end{gathered}$
500K	3000	$\begin{gathered} 2^{17} \\ \hline \hline 10000 \end{gathered}$	$\begin{gathered} 2^{20} \\ \hline \hline 10000 \end{gathered}$
250K	3000	$\begin{gathered} 2^{17} \\ \hline 5000 \\ \hline \end{gathered}$	$\begin{gathered} 2^{20} \\ \hline \hline 5000 \\ \hline \end{gathered}$
100K	3000	$\begin{gathered} 2^{17} \\ \hline 2000 \end{gathered}$	$\begin{gathered} 2^{20} \\ \hline \hline 2000 \\ \hline \end{gathered}$
500K	1500	$\begin{gathered} 2^{17} \\ \hline \hline 20000 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2^{20} \\ \hline \hline 20000 \\ \hline \end{gathered}$

Note . When setting Pr0.08, and encoder resolution is automatically set up as numerators. For full closed controlling, setting of Pr0.08 is ignored and settings of Pro.09 and Pr0.10 are always applied.

Caution … - Max. input pulse frequency varies depending on input terminals.

- The desired setting can be determined by selecting value of numerator and denominator of electronic gear. However, an excessively high division or multiplication ratio cannot guarantee the operation. The ratio should be in a range between 1/1000 and 1000. Excessively high multiplication ratio will cause Err27.2 (command pulse multiplication error protection) due to varying command pulse input or noises, even if the other settings are within the specified range.

Relation between the motor rotational speed and input pulse counts

 P lle rato ear rat o
 0 otal re to rato

When setting the command division and multiplication ratio as numerator/denominator, express it as Pr0.09/Pr0.10 with Pr0.08 = 0. For full closed controlling, setting of Pr0.08 is ignored and settings of Pr0.09 and Pr0.10 are always applied. e.g.) When you want to rotate the motor by 60° with the load of total reduction ratio of 18/365.

	Encoder	
	17-bit	20-bit
Pro. 09	5840	5840
Pro. 10	108	67500
Command pulse	To rotate the output shaft by 60°, enter the command of $8192\left(2^{13}\right)$ pulses from the host controller.	To rotate the output shaft by 60°, enter the command of 10000 pulses from the host controller.
How to determine paramete	$\begin{aligned} & \frac{365}{18} \times \frac{1 \times 2^{17}}{2^{13}} \times \frac{60^{\circ}}{360^{\circ}} \\ & =5840 \\ & =108 \end{aligned}$	$\begin{aligned} & \frac{365}{18} \times \frac{1 \times 2^{20}}{10000} \times \frac{60^{\circ}}{360^{\circ}} \\ & =5840 \\ & =67500 \end{aligned}$

* Refer to P.2-84 "Setup of command division and multiplication ratio

$2^{\mathbf{n}}$	Decimal figures
2^{0}	1
2^{1}	2
2^{2}	4
2^{3}	8
2^{4}	16
2^{5}	32
2^{6}	64
2^{7}	128
2^{8}	256
2^{9}	512
2^{10}	1024
2^{11}	2048
2^{12}	4096
2^{13}	8192
2^{14}	16384
2^{15}	32768
2^{16}	65536
2^{17}	131072
2^{18}	262144
2^{19}	524288
2^{20}	1048576

\qquad

(. Aciustment

1. Gain Adjustment
Outline 5-2
2. Real-Time Auto-Gain Tuning
Basic 5-4
3. Adaptive filter
Adaptive filter 5-10
4. Manual Gain Tuning (Basic)
Outline 5-13
Adjustment in Position Control Mode 5-14
Adjustment in Velocity Control Mode 5-15
Adjustment in Torque Control Mode 5-15
Adjustment in Full-Closed Control Mode 5-16
Gain Switching Function 5-17
Suppression of Machine Resonance 5-20
5. Manual Gain Tuning (Application)Damping Control5-24
Feed forward function 5-26
Instantaneous Speed Observer 5-28
Disturbance observer 5-30
3rd gain switching function 5-32
Friction torque compensation 5-34
Inertia ratio switching function 5-36
Hybrid vibration damping function 5-38
6. About Homing Operation
Caution on Homing Operation 5-39
Homing with Hit \& Stop 5-40
Press \& Hold Control 5-41

1. Gain Adjustment

Outline

Purpose

It is required for the servo driver to run the motor in least time delay and as faithful as possible against the commands from the host controller. You can make a gain adjustment so that you can run the motor as closely as possible to the commands and obtain the optimum performance of the machine.
<e.g. : Ball screw>

Procedures

Note
For safety operation, first adjust the gain by referring to P.6-18 Setup protective function before gain adjustment.

Function		Explanation	Pages to refer
	Real-time auto-gain tuning	Estimates the load inertia of the machine in real time, and automatically sets up the optimum gain corresponding to this result.	P.5-4
	Adaptive filter	Reduces the resonance vibration point by automatically setting up the notch filter coefficient which removes the resonance component from the torque command while estimating the resonance frequency from the vibrating component which appears in the motor speed in actual operating condition.	P.5-10
	Manual gain tuning (basic)BBasic procedure	Execute the manual adjustment or fine-tuning when real-time auto-gain tuning cannot be activated due to the limitation of operation or load condition, or when you want to obtain an optimum response and stability under these conditions.	P.5-13
		Adjustment of position control mode	P.5-14
		Adjustment of velocity control mode	P.5-15
		Adjustment of torque control mode	P.5-15
		Adjustment of full-closed control mode	P.5-16
	Gain switching function	You can expect to reduce vibration at stopping and settling time and to improve command compliance by switching the gains by internal data or external signals.	P.5-17
	Suppression of machine resonance	When the machine stiffness is low, vibration or noise may be generated due to the distorted axis, hence you cannot set the higher gain. You can suppress the resonance with two kinds of filter.	P.5-20
	Manual gain tuning (application)	You can obtain the higher performance while you are not satisfied with the performance obtained with the basic adjustment, using the following application functions.	
	Damping control	Function which reduces vibration by removing the vibration frequency component while the front end of the machine vibrates.	P.5-24
	Feed forward function	Velocity feed forward function improves responsiveness during position control and full closed control. Torque feed forward improves the response of velocity control system.	P.5-26
	Instantaneous speed observer	Function which obtains both high response and reduction of vibration at stopping by estimating the motor speed with the load model, and hence improves the accuracy of speed detection.	P.5-28
	Disturbance observer	Function which uses estimated disturbance torque to reduce effects of the disturbance torque and to reduce vibration.	P.5-30
	3rd gain switching function	By using this function in addition to the normal gain switching function, the gain can be changed at the moment of stop to further shorten the positioning time.	P.5-32
	Friction torque compensation	Offset load compensation and dynamic friction compensation are used to reduce effects of mechanical friction.	P.5-34
	Inertia ratio switching function	This function can be used when selectable 2 inertia ratios are provided.	P.5-36
	Hybrid vibration damping function	This function, when used in full closed control mode, prevents vibration resulting from torsion on motor and load.	P.5-38

Remarks - Pay extra attention to safety, when oscillation (abnormal noise and vibration) occurs, shut off the main power, or turn to Servo-OFF.

The system estimates the load characteristics in real time, and automatically performs basic gain setting and friction compensation by referring to stiffness parameter.

Applicable Range

Real time auto-gain tuning is applicable to all control modes.

	Real-time auto-tuning condition
Control Mode	Specific real-time auto-tuning mode is selected according to the currently active control mode. For details, refer to the description of Pr0.02 Real- time auto-tuning setup.
Others	- Should be in servo-on condition - Input signals such as the deviation counter clear and command input inhibit, and parameters except for controls such as torque limit setup, are correctly set, assuring that the motor can run smoothly.

Caution

Real-time auto-gain tuning may not be executed properly under the conditions described in the table below. Under these conditions, change the load condition or operation pattern, or start manual gain tuning (see P.5-24).

	Conditions which obstruct real-time auto-gain tuning action
Load inertia	- The load is too small or large compared to the rotor inertia. (less than 3 times or more than 20 times). - The load inertia changes too quickly.
Load	- The machine stiffness is extremely low. - Nonlinear characteristics such as backlash exist.
Action pattern	- The motor is running continuously at low speed of ($100[\mathrm{r} / \mathrm{min}]$ or lower. - Acceleration/deceleration is slow (2000 [r/min] per 1[s] or low). - Acceleration/deceleration torque is smaller than unbalanced weighted/ viscous friction torque. -When the speed condition of 100 [r/min] or more and acceleration/ deceleration condition of 2000 [$\mathrm{r} / \mathrm{min}$] per 1 [s] are not maintained for 50 [ms].

How to Operate

1) Bring the motor to stall (Servo-OFF).
2) Set up Pro. 02 (Setup of real-time auto-gain tuning mode) to 1-6.

Default is set to 1 .

Setup value	Real-time auto-gain tuning
0	Invalid
1	Standard
2	Positioning ${ }^{* 1}$
3	${\text { Vertical axis }{ }^{* 2}}^{4}$
4	Friction compensation *3
5	Load characteristic measurement
6	Customize *4

*1 Velocity and torque controls are the same as in the standard mode.
*2 Torque control is the same as in the standard mode.
*3 Velocity control is the same as in the vertical axis mode. Torque control is the same as in the standard mode.
*4 Certain function(s) is not available in a specific control mode. Refer to description in Pr6.32.

Control parameter is automatically set according to Pr0.03 Real-time auto-tuning stiffness setup. For details, see P.5-6 and 5-7.
3) Turn on servo, and start the machine.

Estimation of load characteristics starts.
4) When the load characteristics are determined, Pr0.04 Inertia ratio is updated.

In a specific mode, the following parameters are changed:
Pr6.07 Torque command additional value
Pr6.08 Positive direction torque compensation value
Pr6.09 Negative direction torque compensation value
5) When value of Pr0.03 Real-time auto-tuning stiffness setup is increased, the motor responsiveness will be improved.
Determine the most appropriate stiffness in relation to the positioning setup time and vibration condition.
6) To save the result to memory, write the data to EEPROM.

Caution \cdots. If power is turned off within 30 minutes after the end of tuning process, the result of the real-time auto-tuning is not saved. If the result is not saved, manually write parameters to EEPROM and then turn off power.

Note . While the auto-tuning is valid, parameters that are to be automatically adjusted cannot be changed.
Related page $\cdots \cdots \cdot{ }^{\circ}$ - P.2-107 "EEPROM Writing Mode" • P.4-5, 4-6, 4-53, 4-57 "Details of parameter"

Parameters set/changed by real-time auto-gain tuning

- Parameters which are updated

The real-time auto-tuning function updates the following parameters according to Pr0.02 Real-time auto-tuning setup and Pr6.32 Real-time auto-tuning custom setup and by using the load characteristic estimate values.

Class	No.	Title	Function
0	04	Inertia ratio	Updates this parameter when the real-time auto- tuning inertia ratio update is enabled.
6	07	Torque command additional value	Update this parameter when the vertical axis mode for real time auto-tuning is valid.
6	08	Positive direction torque compensation value	Update this parameter when the friction compensation mode for real time auto-tuning is valid.
6	09	Negative direction torque compensation value	Update this parameter when the friction compensation mode for real time auto-tuning is valid.

- Parameters which are updated to setup value corresponding to stiffness setup

The real-time auto-tuning function updates the following basic gain setup parameters according to Pr0.03 Real-time auto-tuning stiffness setup.

Class	No.	Title	Function	
1	00	1st gain of position loop		
1	01	1st gain of velocity loop		
1	02	1st time constant of velocity loop integration	When stiffness setup is valid, updates the parameter based on the setup value.	
1	04	1st time constant of torque filter		
1	05	2nd gain of position loop		
1	06	2nd gain of velocity loop		
1	07	2nd time constant of velocity loop integration		
1	09	2nd time constant of torque filter		

- Parameters which are set to fixed value

Real-time auto-tuning function sets the following parameters to the fixed value.

Class	No.	Title	Setup value when fixed parameter setup is valid.
1	03	1st filter of speed detection	0
1	08	2nd filter of speed detection	
1	10	Velocity feed forward gain	$300(30 \%)$
1	11	Velocity feed forward filter	$50(0.5 \mathrm{~ms})$
1	12	Torque feed forward gain	0
1	13	Torque feed forward filter	

[^60]
- Parameters which are set in response to gain switching setup

The real-time auto-tuning function sets the following parameters as the gain is switched

Class	No.	Title	Function
1	14	2nd gain setup	Sets to 1 if the current setting is not maintained.
1	15	Mode of position control switching	Sets to 10 to enable the gain switching. Sets to 0 to disable the gain switching.
1	16	Delay time of position control switching	Sets to 50 if the current setting is not maintained.
1	17	Level of position control switching	
1	18	Hysteresis at position control switching	Sets to 33 if the current setting is not maintained.
1	19	Position gain switching time	
1	20	Mode of velocity control switching	Sets to 0 if the current setting is not maintained.
1	21	Delay time of velocity control switching	
1	22	Level of velocity control switching	
1	23	Hysteresis at velocity control switching	
1	24	Mode of torque control switching	
1	25	Delay time of torque control switching	
1	26	Level of torque control switching	
1	27	Hysteresis at torque control switching	

- Parameters which are always set to invalid.

The following settings are always set to invalid when Pro. 02 Real-time auto-tuning setup is not 0 .

Class	No.	Title	Function
6	10	Function expansion setup	Instantaneous speed observer function enable bit (bit 0), disturbance observer function enable bit (bit 1) and inertia ratio switching function enable bit (bit 3) are internally disabled.
6	13	2nd Inertia ratio	Parameter setup can be changed, but disturbance observer is disabled.
6	23	Disturbance torque compensating gain	
6	24	Disturbance observer filter	

Caution

(1) Immediately after the first servo-on upon start up; or after increasing Pr0.03 Real-time auto-tuning stiffness setup, abnormal sound or oscillation may be generated until the load characteristics estimation is stabilized. If such abnormality lasts or repeats for 3 or more reciprocating operations, take the following countermeasures.

1) Lower the setup of Pr0.03 (Selection of machine stiffness at real-time auto-gain tuning).
2) Set Pr0.02 Real-time auto-tuning setup to 0 to disable the real-time auto-tuning.
3) Set Pr0.04 Inertial ratio to the calculational value of the equipment and set Pr6.07 Torque command addition value, Pr6.08 Positive direction compensation value and Pr6.09 Negative direction compensation value to 0.
(2) When abnormal noise and oscillation occur, Pr0.04 (Inertia ratio) or Pr6.07 (Torque command additional value), Pr6.08(Positive direction torque compensation value), Pr6.09(Negative direction torque compensation value) might have changed to extreme values. Take the same measures as the above in these cases.
(3) Among the results of real-time auto-gain tuning, Pr0.04 (Inertia ratio) and Pr6.07 (Torque command additional value), Pr6.08(Positive direction torque compensation value), Pr6.09(Negative direction torque compensation value) will be written to EEPROM every 30 minutes. When you turn on the power again, the auto-gain tuning will be executed using the latest data as initial values.
(4) Because the control gain is updated while the motor stops, changed setting value of Pr0.03 "Real-time auto-tuning stiffness setup" may not be reflected if the motor cannot stop due to excessively low gain or application of a command that directs the motor to turn in the same direction continuously. If the changed stiffness setting value is reflected after motor stops, it may generate abnormal sound or oscillate.
After changing stiffness, stop the motor and check to see that the new stiffness setting is made effective.

Invalidation of Real-Time Auto-Gain Tuning

You can stop the automatic calculation of Pr0.04 (Inertial ratio) and invalidate the realtime auto-gain tuning by setting up Pr0.02 (Real-time auto-gain tuning setup) to 0.
Note that the calculation result of Pr0.04 (Inertia ratio) will be held, and if this parameter becomes abnormal value, use the normal mode auto-gain tuning or set up proper value manually obtained from formula or calculation.

Caution $\cdots \%$ If power is turned off within 30 minutes after the end of tuning process, the result of the real-time auto-tuning is not saved. If the result is not saved, manually write parameters to EEPROM and then turn off power.

Basic gain parameter setup table

Stiffness	1st gain				2nd gain				A4 Series Stiffness setup (reference) *1
	Pr1.00	Pr1. 01	Pr1.02	Pr1.04 ${ }^{2}$	Pr1.05	Pr1.06	Pr1.07	Pr1.09 *2	
	Gain of position loop [0.1/s]	Gain of velocity loop [0.1Hz]	Time constant of velocity loop integration [0.1ms]	Time constant of torque filter [0.01 ms]	Gain of position loop [0.1/s]	Gain of velocity loop [0.1Hz]	Time constant of velocity loop integration [0.1 ms]	Time constant of torque filter [0.01 ms]	
0	20	15	3700	1500	25	15	10000	1500	-
1	25	20	2800	1100	30	20	10000	1100	-
2	30	25	2200	900	40	25	10000	900	-
3	40	30	1900	800	45	30	10000	800	-
4	45	35	1600	600	55	35	10000	600	-
5	55	45	1200	500	70	45	10000	500	-
6	75	60	900	400	95	60	10000	400	-
7	95	75	700	300	120	75	10000	300	-
8	115	90	600	300	140	90	10000	300	0
9	140	110	500	200	175	110	10000	200	-
10	175	140	400	200	220	140	10000	200	-
$11^{* 3}$	320	180	310	126	380	180	10000	126	1
12	390	220	250	103	460	220	10000	103	2
13 *3	480	270	210	84	570	270	10000	84	3
14	630	350	160	65	730	350	10000	65	4
15	720	400	140	57	840	400	10000	57	5
16	900	500	120	45	1050	500	10000	45	6
17	1080	600	110	38	1260	600	10000	38	7
18	1350	750	90	30	1570	750	10000	30	8
19	1620	900	80	25	1880	900	10000	25	9
20	2060	1150	70	20	2410	1150	10000	20	10
21	2510	1400	60	16	2930	1400	10000	16	11
22	3050	1700	50	13	3560	1700	10000	13	12
23	3770	2100	40	11	4400	2100	10000	11	13
24	4490	2500	40	9	5240	2500	10000	9	14
25	5000	2800	35	8	5900	2800	10000	8	-
26	5600	3100	30	7	6500	3100	10000	7	15
27	6100	3400	30	7	7100	3400	10000	7	-
28	6600	3700	25	6	7700	3700	10000	6	-
29	7200	4000	25	6	8400	4000	10000	6	-
30	8100	4500	20	5	9400	4500	10000	5	-
31	9000	5000	20	5	10500	5000	10000	5	-

*1 Stiffness setting of A4 series refers to the setup value (0-15) of A4 series parameter Pr22 Real-time auto-tuning machine stiffness selection.
*2 When 17-bit absolute encoder, limited by the minimum value 10.
*3 Default stiffness setting: 13 for frames A, B and $C, 11$ for frames D, E, F, G and H.

Note •For details of parameters, refer to P.4-13 "Details of parameter".

- Download the A4 series manual from the web site shown below. http://industrial.panasonic.com/jp/i/25000/motor_fa/motor_fa.html

3. Adaptive filter
 Adaptive filter

Outline

Estimates the resonance frequency out of vibration component presented in the motor speed in motion, then removes the resonance component from the torque command by setting up the notch filter coefficient automatically, hence reduces the resonance vibration.

Applicable Range

This function works under the following condition.

	Conditions under which the Adaptive filter is activated
Control Mode	• Applies to other control modes than torque control.
Others	• Should be servo-on status. • Elements other than control parameters, such as deviation counter clear command inhibit and torque limit are appropriately set, enabling the motor to run normally.

Caution

In the following condition, normal operation may not be expected - manually set the notch filter to prevent resonance.

	Conditions which obstruct adaptive filter action
Resonance	
point	• Resonance frequency is lower than 3 times. •Resonance peak is low, or control gain is low where the motor speed is not affected by this. \cdot Multiple resonance of 3 or more points exist.
Load	• Motor speed variation with high harmonic component is generated due to non-linear factors such as backlash.
Command pattern	• Acceleration/deceleration is rapid such as 30000[r/min] per $1[\mathrm{~s}]$.

How to Operate

Enter the action command with Pr2．00 Adaptive filter mode set to a value other than 0.
If the resonance point affects the motor speed，parameters of 3rd notch filter and／or 4th notch filters are automatically set according to the number of adaptive filters．

Set the operation of the adaptive filter to the following parameter．

Class	No．	Title	Setup value	Function
2	00	Adaptive filter mode setup	0	［Adaptive filter：invalid］ The adaptive filter is disabled．Parameters related to the 3rd and 4th notch filter hold the current value．
			1	［Adaptive filter： 1 filter is valid］ One adaptive filter is enabled．Parameters related to the 3rd notch filter will be updated based on adaptive performance．
			2	［Adaptive filter： 2 filters are valid］ Two adaptive filters are enabled．Parameters related to the 3rd and 4th notch filters will be updated based on adaptive performance．
			3	［Resonance frequency measurement mode］ Measure the resonance frequency．Result of measurement can be checked with PANATERM． Parameters related to the 3rd and 4th notch filter hold the current value．
			4	［Clear result of adaptation］ Parameters related to the 3rd and 4th notch filter are disabled and results of adaptive operation are cleared．

At the same time，the following parameters are automatically set．

Class	No．	Title	Function
2	07	3rd notch frequency	In no resonance point is found，the frequency is set to 5000 ．
2	08	3rd notch width selection	Automatically set when the adaptive filter is active．
2	09	3rd notch depth selection	
2	10	4th notch frequency	Notch frequency is automatically set to the 2nd resonance frequency estimated by the adaptive filter． In no resonance point is found，the frequency is set to 5000 ．
2	11	4th notch width selection	Automatically set when 2 adaptive filters are active．
2	12	4th notch depth selection	

Caution

(1) Immediately after the first servo-on at start up; or after increasing stiffness setting with the real-time auto-tuning enabled, abnormal sound or oscillation may be generated until the adaptive filter stabilizes. If such abnormality lasts or repeats for 3 or more reciprocating operations, take the following countermeasures.

1) Write the parameters which have given the normal operation into EEPROM.
2) Lower the setup of Pr0.03 (Selection of machine stiffness at real-time auto-gain tuning).
3) Invalidate the adaptive filter by setting up Pr2.00 (Setup of adaptive filter mode) to 0. (Reset of inertia calculation and adaptive action)
4) Set up the notch filter manually.
(2) Abnormal sound or oscillation may excessively change the setup value of 3rd and 4th notch filters. If such change occurs, disable the adaptive filter as described in step 3) above, change setup value of Pr2.07 3rd notch frequency and Pr2.10 4th notch frequency to 5000 (disable), and then enable the adaptive filter again.
(3) The 3rd filters (Pr2.07-Pr2.09) and 4th notch filters (Pr2.10-Pr2.12) are written to EEPROM every 30 minutes. Upon power up, these data are used as default values during adaptive process.
[^61]As explained previously, MINAS-A5 series features the automatic gain tuning function, however, there might be some cases where this automatic gain tuning cannot be adjusted properly depending on the limitation on load conditions. Or you might need to readjust the tuning to obtain the optimum response or stability corresponding to each load. Here we explain this manual gain tuning method by each control mode and function.

Before Making a Manual Adjustment

By monitoring waveforms using the waveform graphic function of the setup support software PANATERM installed on the PC or by measuring the analog voltage waveform with the help of the monitor function, accurate adjustment can be positively, quickly and easily done when compared with that performed on the front panel.

1. Analog monitor output

You can measure the actual motor speed, commanded speed, torque and deviation pulses by analog voltage level by using an oscilloscope. Set up the types of the signals or the output voltage level with Pr4.16 (Selection of speed monitor) and Pr4.21 (Selection of torque monitor).

2. Waveform graphic function of the PANATERM

You can display the command to the motor, motor movement (speed, torque command and deviation pulses) as a waveform graphic on PC display. Refer to P.7-26, "Outline of the Setup Support Software, PANATERM" of Supplement.

USB mini-B

Position control of MINAS-A5 series is described in Block diagram of P.3-14.
Make adjustment in position control per the following procedures.
(1) Set up the following parameters to the values of the table below.

Parameter No. $(\mathbf{P r} \square \mathbf{\square}$	Title of parameter	Standard value
1.00	1st gain of position loop	270
1.01	1st gain of velocity loop	150
1.02	1st time constant of velocity loop integration	370
1.03	1st filter of velocity detection	0
1.04	1st time constant of torque filter time	152
1.10	Velocity feed forward	0
1.11	Time constant of feed forward filter	0
1.05	2nd gain of position loop	270
1.06	2nd gain of velocity loop	150
1.07	2nd time constant of velocity loop integration	370
1.08	2nd filter of speed detection	0
1.09	2nd time constant of torque filter	152
2.01	1st notch frequency	5000
2.02	1st notch width selection	2

Parameter No. $(\operatorname{Pr} \square)$	Title of parameter	Standard value
0.04	Inertia ratio	100
0.02	Setup of real time auto-gain tuning mode	0
2.00	Adaptive filter setup mode	0
2.14	1st damping frequency	0
2.15	Setup of 1st damping filter	0
2.16	2nd damping frequency	0
2.17	Setup of 2nd damping filter	0
1.14	2nd gain setup	0
1.15	Mode of position control switching	0
1.16	Delay time of position control switching delay	0
1.17	Level of position control switching	0
1.18	Hysteresis at position control switching	0
1.19	Position gain switching time	0
2.22	Positional command smoothing filter	1
2.23	Positional command FIR filter	0

(2) Enter the inertia ratio of Pr0.04. Measure the ratio or setup the calculated value.
(3) Make adjustment using the standard values below.

Order	Parameter (Pr $\square \square)$	Title	Standard value	How to adjust
1	$\operatorname{Pr1.01}$	1st gain of velocity loop	300	Increase the value within the range where no abnormal noise and no vibration occur. If they occur, lower the value.
2	Pr1.04	1st time constant of torque filter	50	When vibration occurs by changing Pr1.01, change this value. Setup so as to make Pr1.01 x Pr1.04 becomes smaller than 10000. If you want to suppress vibration at stopping, setup larger value to Pr1.04 and smaller value to Pr1.01. If you experience too large vibration right before stopping, lower than value of Pr1.04.
3	Pr1.00	1st gain of position loop	500	Adjust this observing the positioning time. Larger the setup, faster the positioning time you can obtain, but too large setup may cause oscillation.
4	Pr1.02	1st time constant of velocity loop integration	250	Setup this value within the range where no problem occurs. If you setup smaller value, you can obtain a shorter positioning time, but too small value may cause oscillation. If you setup too large value, deviation pulses do not converge and will be remained.
Increase the value within the range where no abnormal noise				
occurs.				

[^62]Velocity control of MINAS-A5 series is described in Block Diagram of P.3-15 of Velocity Control Mode.
Adjustment in velocity control is almost same as that in position control described in "Adjustment in Position Control Mode", and make adjustments of parameters per the procedures except the gain setup of position loop gain (Pr1.00, Pr1.05) and the setup of velocity feed forward gain (Pr1.10).

4. Manual Gain Tuning (Basic)

 Adjustment in Torque Control ModeTorque control of MINAS-A5 series is described in P.3-16, "Block Diagram" of Torque Control Mode.
This torque control is based on velocity control while making Pr3.21 [Speed limit value 1], Pr3.22 [Speed limit value 2] or SPL input as a speed limit. Here we explain the setup of speed limiting value.

- Setup of speed limiting value

The torque command selection (Pr3.17) specifies the setup method.
Pr3.17 = 0 Set up by using speed limit value 1 (Pr3.21)
Pr3.17 = 1 Set up by using analog input (SPL)
$\operatorname{Pr} 3.17=2$ For positive direction, set up by using the speed limit value 1 (Pr3.21)
For negative direction, set up by using the speed limit value 2 (Pr3.22)

- When the motor speed approaches to the speed limiting value, torque control following the analog torque command shifts to velocity control based on the speed limiting value.
- In order to stabilize the movement under the speed limiting, you are required to set up the parameters according to the above-mentioned "Adjustment in Velocity Control Mode".
- When the speed limiting value is too low or the velocity loop gain is too low, or when the time constant of the velocity loop integration is 10000 (invalid), the input to the torque limiting portion of the above fig. becomes small and the output torque may not be generated as the analog torque command.

Full-closed control of MINAS-A5 series is described in Block diagram of P.3-17 of FullClosed Control.
Adjustment in full-closed control is almost same as that in position control described in P.3-12 "Adjustment in Position Control Mode", and make adjustments of parameters per the procedures except cautions of P.5-14, "Outline of Full-Closed Control" (difference of command unit and difference of electronic gear).
Here we explain the setup of feedback scale ratio and hybrid deviation excess of fullclosed control.

1) Setup of external scale ratio

Setup the external scale ratio using the numerator of external scale division (Pr3.24) and denominator of external scale division (Pr3.25).

- Check the encoder feedback pulse counts per one motor revolution and the external scale pulse counts per one motor revolution, then set up the numerator of external scale division (Pr3.24), and denominator of external scale division (Pr3.25) so that the following formula can be established.

$$
\frac{\text { Pr3. } 24}{\text { Pr3. } 25}=\frac{\text { Number of encoder feedback pulses per motor rotation }}{\text { Number of external scale pulses per motor rotation }}
$$

- If this ratio is incorrect, a gap between the position calculated from the encoder feedback pulse counts and that of calculated from the external scale pulse counts will be enlarged and hybrid deviation excess (Err25.0) will be triggered when the work or load travels a long distance.
- When you set up Pr3. 24 to 0, the encoder feedback pulse counts will be automatically set up.

2) Setup of hybrid deviation excess

Set up the minimum value of hybrid deviation excess (Pr3.28) within the range where the gap between the motor (encoder) position and the load (feedback scale) position will be considered to be an excess.

- Note that the hybrid deviation excess (Err25.0) may be generated under other conditions than the above 1), such as reversed connection of the external scale or loose connection of the motor and the load.

Caution

(1) Enter the command pulses based on the feedback scale reference.
(2) The feedback scales to used for full-closed control are as follows. When A- and B-phase parallel, or serial scale,

- ABS ST770A, ST770AL, AT573A series by Mitsutoyo Corp.
- SR77, SR87, SL700, SL710 by Magnescale Co., Ltd.
(3) To prevent the runaway and damage of the machine due to the setup of the feedback scale, setup the hybrid deviation excess (Pr3.28) to the appropriate value, in the unit of feedback scale resolution.
(4) We recommend the external scale as $1 / 40 \leq$ external scale ratio ≤ 160.

Even within this range, if you setup the external scale ratio to smaller value than $50 / \mathrm{po}$ sition loop gain (Pr1.00 and 1.05), you may not be able to control by one pulse unit. If you set up too large external scale ratio, you may expect larger noise in movement.

[^63]By selecting appropriate gain based on internal data or external signal, the following effects can be obtained.

- Decrease the gain at the time of stoppage (servo lock) to reduce vibration.
- Increase the gain at the time of stoppage (setting) to shorten the settling time.
- Increase the gain during operation to improve command compliance.
- Based on condition of the equipment, change the gain with external signal.

<Example>

Following is the example when you want to reduce the noise at motor in stall (Servo-Lock), by setting up to lower gain after the motor stops.

- Make adjustment referring to the basic gain parameter setup table (P.5-9) as well.

		Execute manual gain-tuning	Set up the same value as Pr1.05		Set up Pr1.14 to 1.19		Adjust Pr1. 01 and 1.04 at
$\begin{array}{\|c\|} \hline \text { Parameter } \\ \text { No. } \\ (\operatorname{Pr} \square \square) \end{array}$	Title of parameter	without gain switching	to 1.09 (2nd gain) to Pr1.00 to 1.04 (1st gain)		(Gain switching condition)	\rightarrow	stopping (1st gain)
1.00	1st gain of position loop	630					
1.01	1st gain of velocity loop	350					270
1.02	1st time constant of velocity integration	160					
1.03	1st filter of velocity detection	0					
1.04	1st time constant of torque filter	65					84
1.10	Velocity feed forward	300					
1.11	Filter of velocity feed forward	50					
1.05	2nd gain of position loop		630				
1.06	2nd gain of velocity loop		350				
1.07	2nd time constant of velocity integration		160				
1.08	2nd filter of velocity detection		0				
1.09	2nd time constant of torque filter time		65				
1.14	Action setup of 2nd gain	0			1		
1.15	1st mode of control switching				7		
1.16	1st delay time of control switching				30		
1.17	1st level of control switching				0		
1.18	1st hysteresis of control switching				0		
1.19	Switching time of position gain				0		
0.04	Inertia ration	- Enter the known value from load calculation - Measure the inertia ratio by executing nor mal auto-gain tuning - Default is 250					

[^64]
Setup of Gain Switching Condition

- Positing control mode, Full-closed control mode (\bigcirc : Corresponding parameter is valid, - : invalid)

Setup of gain switching condition			Setup parameters at position control, full-closed control		
	Switching condition to		Delay time ${ }^{* 1}$	Level	Hysteresis*2
Pr1.15	2nd gain	Fig.	Pr1.16	Pr1.17	Pr1.18
0	Fixed to 1st gain		-	-	-
1	Fixed to 2nd gain		-	-	-
2	Gain switching input		-	-	-
3	Torque command	A	\bigcirc	- [\%]	\bigcirc [\%]
4	Invalid (Fixed to 1st gain)		-	-	-
5	Speed command	C	\bigcirc	Or/min]	\bigcirc [$\mathrm{r} / \mathrm{min}$]
6	Position deviation	D	\bigcirc	$\bigcirc{ }^{33}$ [pulse]	$\bigcirc{ }^{33}$ [pulse]
7	Position command exists.	E	\bigcirc	-	-
8	Not in positioning complete	F	\bigcirc	-	-
9	Speed	C	\bigcirc	Or/min]	$\bigcirc[\mathrm{r} / \mathrm{min}]$
10	Command exists + velocity	G	\bigcirc	$\bigcirc[r / m i n] * 5$	$\bigcirc[r / m i n]{ }^{* 5}$

- Velocity control mode

Setup of gain switching condition			Setup parameters at velocity control mode		
Pr1 20	Switching condition to		Delay time*1	Level	Hysteresis*2
Pr1. 20	2nd gain	Fig.	Pr1.16, 1.21	Pr1.17, 1.22	Pr1.18, 1.23
0	Fixed to 1st gain		-	-	-
1	Fixed to 2nd gain		-	-	-
2	Gain switching input		-	-	-
3	Torque command	A	\bigcirc	O [\%]	- [\%]
4	Variation of speed command is large.	B	-	$\bigcirc^{* 4}[10(\mathrm{r} / \mathrm{min}) / \mathrm{s}]$	$\bigcirc{ }^{* 4}[10(\mathrm{r} / \mathrm{min}) / \mathrm{s}]$
5	Speed command	C	\bigcirc	\bigcirc [r/min]	$\bigcirc[r / m i n]$

- Torque control mode

Setup of gain switching condition			Setup parameters at torque control mode		
	Switching condition to		Delay time ${ }^{*}$	Level	Hysteresis*2
Pr1. 24	2nd gain	Fig.	Pr1.16, 1.25	Pr1.17, 1.26	Pr1.18, 1.27
0	Fixed to 1st gain		-	-	-
1	Fixed to 2nd gain		-	-	-
2	Gain switching input, GAIN ON		-	-	-
3	Variation of torque command is large.	A	\bigcirc	\bigcirc [\%]	\bigcirc [\%]

*1 Delay time (Pr1.16, 1.12 and 1.25) will be valid only when returning from 2nd to 1st gain.
*2 Hysteresis (Pr1.18, 1.23 and 1.27) is defined as the fig. below shows.
*3 Designate with either the encoder resolution or the external scale resolution depending on the control mode.
*4 When you make it a condition that there is speed variation of $10 \mathrm{r} / \mathrm{min}$ in 1 s , set up the value to 1.
*5 When Pr1.15=10, the meanings of delay time, level and hysteresis are differ-

Hysteresis
(Pr1.18, 1.23, 1.27)
 ent from the normal. (refer to Fig. G)

4. Manual Gain Tuning (Basic)

Adjustment
Suppression of Machine Resonance

In case of a low machine stiffness, you cannot set up a higher gain because vibration and noise occur due to oscillation caused by axis distortion or other causes. By suppressing the resonance peak at the notch filter, higher gain can be obtained or the level of vibration can be lowered.

1. Torque command filter (Pr1.04 and Pr1.09)

Sets up the filter time constant so as to damp the frequency at vicinity of resonance frequency. You can obtain the cut off frequency of the torque command filter in the following formula.
Cut off frequency $(\mathrm{Hz}) \mathrm{fc}=1 /(2 \pi \times$ parameter setup value $\times 0.00001)$

2. Notch filter (Pr2.00, 2.07 to Pr2.12)

- Adaptive filter

MINASA-5 series feature the adaptive filter. With this filter you can control vibration of the load which resonance points vary by machine by machine and normal notch filter or torque filter cannot respond. Enter the action command with Pr2.00 Adaptive filter mode set to a value other than 0.
If the resonance point affects the motor speed, parameters of 3rd notch filter and/ or 4 th notch filters are automatically set according to the number of adaptive filters.

Pr2.00	Adaptive filter mode	1: Adaptive filter is valid 2: 2 adaptive filters are valid.
Pr2.07	3rd notch frequency	In no resonance point is found, the frequency is set to 5000.
Pr2.08	3rd notch width selection	Automatically set when the adaptive filter is active.
Pr2.09	3rd notch depth selection	
Pr2.10	4th notch frequency	Notch frequency is automatically set to the 2nd resonance frequency estimated by the adaptive filter. In no resonance point is found, the frequency is set to 5000.
Pr2.11	4th notch width selection	Automatically set when 2 adaptive filters are active.
Pr2.12	4th notch depth selection	

- Notch filter (Pr2.01 to 2.12)

MINASA-5 series feature 4 normal notch filters. You can adjust frequency and width and depth.

Pr2.01	1st notch frequency	Set the center frequency of the 1st notch filter. ${ }^{* 1}$
Pr2.02	1st notch width selection	Set the width of notch at the center frequency of the 1st notch filter.
Pr2.03	1st notch depth selection	Set the depth of notch at the center frequency of the 1st notch filter.
Pr2.04	2nd notch frequency	Set the center frequency of the 2nd notch filter. ${ }^{* 1}$
Pr2.05	2nd notch width selection	Set the width of notch at the center frequency of the 2nd notch filter.
Pr2.06	2nd notch depth selection	Set the depth of notch at the center frequency of the 2nd notch filter.
Pr2.07	3rd notch frequency	Set the center frequency of the 3rd notch filter. *1
Pr2.08	3rd notch width selection	Set the width of notch at the center frequency of the 3rd notch filter.
Pr2.09	3rd notch depth selection	Set the depth of notch at the center frequency of the 3rd notch filter.
Pr2.10	4th notch frequency	Set the center frequency of the 4th notch filter. ${ }^{* 1}$
Pr2.11	4th notch width selection	Set the width of notch at the center frequency of the 4th notch filter.
Pr2.12	4th notch depth selection	Set the depth of notch at the center frequency of the 4th notch filter.

*1 The notch filter function will be invalidated by setting up this parameter to "5000".

Example of application machine

daptive filter enabled

Machine which has multiple resonance points

Adaptive filter and notch filter enabled

Depth adjustment enabled

Notch width and depth

The width of the notch filter is the ratio of the width of -3 dB attenuation frequency band with respect to the notch frequency at its center when depth is 0 , and the value is as shown in the table below.
The notch filter depth indicates I:O ratio where the input at the center frequency is completely shut with setup value 0 but fully received with setup value 100. The table below shows this value in dB on the right.

Notch filter frequency characteristics

How to Check the Resonance Frequency of the Machine

(1) Start up the Setup Support Software, "PANATERM" and bring the frequency characteristics measurement screen.
(2) Set up the parameters and measurement conditions. (Following values are standard.)

- Set up Pr1. 01 (1st gain of velocity loop) to 25 or so. (to lower the gain and make it easy to identify the resonance frequency)
- Set up the amplitude to $50(\mathrm{r} / \mathrm{min}$) or so. (not to saturate the torque)
- Make the offset to 100 (r/min) or so. (to increase the speed detecting data and to avoid the measurement error in the vicinity of speed-zero)
- Polarity is made positive direction with " + " and negative direction with " - ".
- Setup the sampling rate to 0 . (setup range to be 0 to 7 .)
(3) Execute the frequency characteristic analysis.
- Make sure that the revolution does not exceed the travel limit before the measurement. Standard revolutions are,
Offset $(r / m i n) \times 0.017 \times($ sampling rate +1$)$
Larger the offset, better measurement result you can obtain, however, revolutions may be increased.
- Set up Pr2.00 (Setup of adaptive filter mode) to 0 while you make measurement.

Note \because - When you set a larger value of offset than the amplitude setup and make the motor run to the one direction at all time, you can obtain a better measurement result.

- Set up a smaller sampling rate when you measure a high frequency band, and a larger sampling rate when you measure a low frequency band in order to obtain a better measurement result.
-When you set a larger amplitude, you can obtain a better measurement result, but noise will be larger. Start a measurement from $50[r / \mathrm{min}]$ and gradually increase it.

Relation of Gain Adjustment and Machine Stiffness

In order to enhance the machine stiffness,
(1) Install the base of the machine firmly, and assemble them without looseness.
(2) Use a coupling designed exclusively for servo application with high stiffness.
(3) Use a wider timing belt. Belt tension to be within the permissible load to the motor shaft.
(4) Use a gear reducer with small backlash.

- Inherent vibration (resonance frequency) of the machine system has a large effect to the gain adjustment of the servo.
You cannot setup a higher response of the servo system to the machine with a low resonance frequency (machine stiffness is low).

5
 Adjustment

 5. Manual Gain Tuning (Application)

 5. Manual Gain Tuning (Application)

 Damping Control

 Damping Control}

Outline

This function reduces the vibration at the top or on whole of the equipment by removing the vibration frequency components specified by the positional command. Up to 2 among 4 frequency settings can be used at the same time.

Applicable Range

This function can only be applicable when the following conditions are satisfied.

	Conditions under which the damping control is activated
Control mode	- Control mode to be either or both position control or/and full-closed control. Pr0.01 $=0$: Position control Pr0.01 $=3: 1$ st control mode of position and velocity control Pr0.01 = $4: 1$ st control mode of position control and torque control Pr0.01 $=6$: Full-closed control

Caution

This function does not work properly or no effect is obtained under the following conditions.

	Conditions which obstruct the damping control effect
Load	- Vibration is triggered by other factors than command (such as disturbance).
	• Ratio of resonance frequency and anti-resonance frequency is large.
	Vibration frequency is out of the range of $1.0-200.0[\mathrm{~Hz}]$.

[^65](1) Setup of damping frequency (1st: Pr2.14, 2nd: Pr2.16, 3rd: Pr2.18, 4th: Pr2.20)) Measure the vibration frequency of the front edge of the machine. When you use such instrument as laser displacement meter, and can directly measure the load end vibration, read out the vibration frequency from the measured waveform and enter the correct value to the damping frequency parameter.

If no suitable measuring instrument is available, use our setup support software "PANATERM" that can graphically display the position deviated waveform as shown in the figure below. Determine the frequency (Hz) of the residual vibration and set the damping frequency.
(2) Setup of damping filter (1st: Pr2.15, 2nd: Pr2.17, 3rd: Pr2.19, 4th: Pr2.21)) First, set up 0 .
You can reduce the settling time by setting up larger value, however, the torque ripple increases at the command changing point as the right fig. shows. Setup within the range where no torque saturation occurs under the actual condition. If torque saturation occurs, damping control effect will be lost.

Caution \cdots Setting range of the damping filter should be limited as follows:
10.0 Hz - damping frequency \leq damping filter setting \leq damping frequency
(3) Setup of damping filter switching selection (Pr2.13)

You can switch the 1st or the 2nd damping filter depending on the vibration condition of the machine.

Pr2.13	vS-SEL2	VS-SEL1	1st damping	2nd damping	3rd damping	4th damping
0	-	-	\bigcirc	\bigcirc		
1	-	OFF	\bigcirc		\bigcirc	
	-	ON		\bigcirc		\bigcirc
2	OFF	OFF	\bigcirc			
	OFF	ON		\bigcirc		
	ON	OFF			\bigcirc	
	ON	ON				\bigcirc
Pr2.13	Position commanddirection		1st damping	2nd damping	3rd damping	4th damping
3	Positive direction		\bigcirc		\bigcirc	
	Negative direction			\bigcirc		\bigcirc

Damping control is switched over on the rising edge of the command while the positioning complete is being output and the number of command pulses/ 0.166 ms changes from 0 to non-0 state.
If higher damping frequency is selected or damping is disabled and positioning complete range is wide, and if the pulse (the area of the pulse = value of position command before filter minus value of position command after filter, integrated with respect to time) remains in the filter at the rising edge of the command, the pulse is rapidly discharged immediately after damping change. This causes the motor to run at a rate higher than the commanded speed for a while to return to the predetermined position.

5. Manual Gain Tuning (Application)

Feed forward function

Outline

When position control or full closed control is used, positional deviation can be further reduced when compared with deviation where control is made only by feedback, and response is also improved, by calculating the velocity control command necessary for operation based on the internal positional command, and by adding velocity feed forward to the speed command calculated by comparison with position feedback.
The response time of the velocity control system is also improved by calculating torque command necessary for operation based on the velocity control command and by adding torque feed forward calculated by comparison with velocity feedback to the torque command.

Related Parameter

For A5 series, the velocity feed forward and torque feed forward can be used.

Class	No.	Title	Function
1	10	Velocity feed forward gain	Multiply the velocity control command calculated according to the internal positional command by the ratio of this parameter and add the result to the speed command resulting from the positional control process.
1	11	Velocity feed forward filter	Set the time constant of 1st delay filter which affects the input of velocity feed forward.
1	12	Torque feed forward gain	Multiply the torque command calculated according to the velocity control command by the ratio of this parameter and add the result to the torque command resulting from the velocity control process.
1	13	Torque feed forward filter	Set up the time constant of 1st delay filter which affects the input of torque feed forward.
6	10	Analog torque feed forward conversion gain	Set the input gain of analog torque feed forward. 0 to 9 are invalid.
setup			

Usage example of velocity feed forward

The velocity feed forward will become effective as the velocity feed forward gain is gradually increased with the velocity feed forward filter set at approx. 50 (0.5 ms). The positional deviation during operation at a constant velocity is reduced as shown in the equation below in proportion to the value of velocity feed forward gain.

Positional deviation [unit of command] = command speed [unit of command/s] / positional loop gain [1/s] $\times(100-$ velocity feed forward gain [\%]) / 100

With the gain set at 100%, calculatory positional deviation is 0 , but significant overshoot occurs during acceleration/deceleration.
If the updating cycle of the positional command input is longer than the driver control cycle, or the pulse frequency varies, the operating noise may increase while the velocity feed forward is active. If this is the case, use positional command filter (1st delay or FIR smoothing), or increase the velocity forward filter setup value.

Usage example of torque feed forward

- To use the torque feed forward, correctly set the inertia ratio.

Use the value that was determined at the start of the real time auto tuning, or set the inertia ratio that can be calculated from the machine specification to Pr0. 04 Inertia ratio.

- The torque feed forward will become effective as the torque feed forward gain is gradually increased with the torque feed forward filter is set at approx. 50 (0.5 ms).
- Positional deviation at a constant acceleration/deceleration can be minimized close to 0 by increasing the torque forward gain. This means that positional deviation can be maintained at near 0 over entire operation range while driving in trapezoidal speed pattern under ideal condition where disturbance torque is not active .

Zero positional deviation is impossible in actual situation because of disturbance torque. As with the velocity feed forward, large torque feed forward filter time constant decreases the operating noise but increases positional deviation at acceleration change point.

Usage example of analog torque feed forward

Setting bit 5 place of Pr6. 10 Function expansion setup to 1 enables the analog torque feed forward. When the analog input 3 is used by another function (e.g. analog torque limit), the function becomes invalid.
The voltage (V) applied to the analog input 3 is converted to the torque via Pr6.00 Analog torque feed forward conversion gain setup and added to the torque command (\%): in CCW direction if it is positive voltage or in CW direction if negative.
The voltage (V) applied to the analog input 3 is converted
 to the motor torque command (\%) through the process as shown in the graph below.
The slope represents when Pr6.00 $=30$. The slope changes as the setup value changes.
Torque command $(\%)=100 \times$ input voltage (V) / (Pr6.00 setup value $\times 0.1$)

Outline

This function enables both realization of high response and reduction of vibration at stopping, by estimating the motor speed using a load model, hence improving the accuracy of the speed detection.

Applicable Range

This function can be applicable only when the following conditions are satisfied.

	Conditions under which the instantaneous speed observer is activated
Control mode	• Control mode to be either or both position control or/and velocity control. Pro.01 = 0 : Position control Pro.01 = $1:$ Velocity control
Others	• Should be in servo-on condition • Input signals such as the deviation counter clear and command input inhibit, and parameters except for controls such as torque limit setup, are correctly set, assuring that the motor can run smoothly. • Real-time auto-tuning should be disabled. (Pr0.02=0)

Caution

This function does not work properly or no effect is obtained under the following conditions.

	Conditions which obstruct instantaneous speed observer action
Load	• Gap between the estimated total load inertia (motor + load) and actual machine is large. e.g.) Large resonance point exists in frequency band of $300[\mathrm{~Hz}]$ or below. Non-linear factor such as large backlash exists.
Others	• Listurbance torque with harmonic component is applied.

[^66]
Related Parameter

Class	No.	Title	Function
6	10	Function expansion setup	Speed observer enable bit (bit 0) valid/invalid the function. bit0 0: Invalid 1: Valid $*$ bit 0 = LSB

How to Use

(1) Setup of inertia ratio (Pr0.04)

Set up as exact inertia ratio as possible.

- When the inertia ratio (Pr0.04) is already obtained through real-time auto-gain tuning and is applicable at normal position control, use this value as Pro. 04 setup value.
- When the inertia ratio is already known through calculation, enter this calculated value.
- When the inertia ratio is not known, execute the normal mode auto-gain tuning and measure the inertia ratio.

(2) Adjustment at normal position control

- Adjust the position loop gain, velocity loop gain, etc.
(3) Setup of instantaneous velocity observer (Pr6.10)
- By enabling instantaneous speed observer function through function expansion setup (Pr6.10), the speed detection method changes to the instantaneous speed observer.
- When you experience a large variation of the torque waveform or noise, return this to 0 , and reconfirm the above cautions and (1).
- When you obtain the effect such as a reduction of the variation of the torque waveform and noise, search an optimum setup by making a fine adjustment of Pr0.04 (Inertia ratio) while observing the position deviation waveform and actual speed waveform to obtain the least variation. If you change the position loop gain and velocity loop gain, the optimum value of the inertia ratio (Pr0.04) might have been changed, and you need to make a fine adjustment again.

5

 5. Manual Gain Tuning (Application)

 5. Manual Gain Tuning (Application)}

Adjustment

Disturbance observer

Outline

This function uses the disturbance torque determined by the disturbance observer to reduce effect of disturbance torque and vibration.

Applicable Range

This function can be applicable only when the following conditions are satisfied.

	Conditions under which the disturbance observer is activated
Control mode	- Control mode to be either or both position control or/and velocity control. Pr0.01 = 0 : Position control Pr0.01 = 1 : Velocity control
Others	- Should be in servo-on condition - Input signals such as the deviation counter clear and command input inhibit, and parameters except for controls such as torque limit setup, are correctly set, assuring that the motor can run smoothly. - Real-time auto-tuning should be disabled. (Pro.02=0) - Instantaneous speed observer should be disabled. (Pr6.10 bit0=0)

Caution

Effect may not be expected in the following condition.

	Conditions which obstruct disturbance observer action
Load	• Resonant frequency is lower than the cutoff frequency estimated by the disturbance observer. • Disturbance torque contains many high frequency components.

Related page ...: \cdot P.4-4..., P.4-53 "Details of parameter"

Related Parameter

Class	No.	Title	Function
6	10	Function expansion setup	Sets bits related to disturbance observer. bit1 0: Invalid 1: Valid bit2 0 : Always valid 1 : alid only when 1st gain is selected. * bit 0 = LSB Example) To use the disturbance observer in the enabled mode only when 1st gain is selected: Setup value $=6$ To use the disturbance observer always in the enabled mode: Setup value = 2
6	23	Disturbance torque compensating gain	Set up compensating gain against disturbance torque.
6	24	Disturbance observer filter	Set up the filter time constant according to the disturbance torque compensation.

1) With Pr6.10 Function enhancement setup, set observer enable/disable and operation mode (always enable/enable only when 1st gain is selected).

2) Setup of Pr6. 24 (Disturbance observer filter)

First, set up Pr6.24 to a larger value and check the operation with Pr6. 23 Disturbance torque compensating gain set to a low value, and then gradually decrease the setup value of Pr6.24. A low filter setup value assures disturbance torque estimation with small delay and effectively suppresses effects of disturbance. However, this results in larger operation noise. Well balanced setup is required.
3) Setup of Pr6. 23 (Disturbance torque compensating gain)

After setting up Pr6.24, increase Pr6.23.
The disturbance suppressing capability increases by increasing the gain, but it is associated with increasing volume of operation noise.
This means that well balanced setup can be obtained by adjusting Pr6.24 and Pr6.23.

Outline

In addition to the normal gain switching function described on P.5-17, 3rd gain switching function can be set to increase the gain just before stopping. The higher gain shortens positioning adjusting time.

Applicable Range

This function can be applicable only when the following conditions are satisfied.

	Conditions under which the 3rd gain switching function is activated
Control mode	• Control mode to be either or both position control or/and full-closed control. Pro.01 $=0:$ Position control
Pro.01 $=6:$ Full-closed control	

Related Parameter

Class	No.	Title	Function
6	5	Position 3rd gain valid time	Set up the time at which 3rd gain becomes valid.
6	6	Position 3rd gain scale factor	Set up the 3rd gain by a multiplying factor of the 1st gain: 3rd gain $=1$ st gain \times Pr6.06/100

[^67]
How to Use

While in the condition under which the normal gain switching functions, set the 3rd gain application time to Pr6.05 Position 3rd gain enable time, and set the 3rd gain (scale factor with reference to 1st gain) to Pr6.06 Position 3rd gain magnification ratio.

- If 3rd gain is not used, set Pr6.05 to 0 and Pr6.06 to 100.
- The 3rd gain is enabled only for position control or full closed control.
- During the 3rd gain period, only position loop gain/speed proportional gain becomes 3rd gain, during other periods, 1st gain setting is used.
- When the 2nd gain switching condition is established during 3rd gain period, 2nd gain is used.
- During transition from 2nd gain to 3rd gain, Pr1.19 Position gain switching time is applied.

Caution ... When the gain is switched from 2nd to 1st by the change in parameter, the 3rd gain period appears.

Example)

Pr1.15 Position control switching mode $=7$ switching condition: with positional command:

[3rd gain period]
Position loop gain $=\operatorname{Pr} 1.00 \times$ Pr6.06/100
Speed proportional gain $=\operatorname{Pr} 1.01 \times \operatorname{Pr} 6.06 / 100$
Time constant of velocity integration, speed detection filter and torque filter directly use the 1st gain value.

5. Manual Gain Tuning (Application)

Friction torque compensation

Outline

To reduce effect of friction represented by mechanical system, 2 types of friction torque compensation can be applied: offset load compensation that cancels constant offset torque and the dynamic friction compensation that varies direction as the operating direction varies.

Applicable Range

This function can be applicable only when the following conditions are satisfied.

	Conditions under which the Friction torque compensation is activated
Control mode	• Specific to individual functions. Refer to "Related parameters" shown below.
Others	• Should be in servo-on condition • Input signals such as the deviation counter clear and command input inhibit, and parameters except for controls such as torque limit setup, are correctly set, assuring that the motor can run smoothly.

Related Parameter

Combine the following 3 parameters to setup appropriate friction torque compensation.

Class	No.	Title	Function
6	7	Torque command additional value	Set up the offset load compensation value usually added to the torque command in a control mode except for the torque control mode.
6	8	Positive direction torque compensation value	Set up the dynamic friction compensation value to be added to the torque command when forward positional command is fed.
6	9	Negative direction torque compensation value	Set up the dynamic friction compensation value to be added to the torque command when negative direction positional command is fed.

[^68]
How to Use

The friction torque compensation will be added in response to the entered positional command direction as shown below.
[Positive direction]

The friction compensation torque is the sum of the offset load compensation value which is set according to the torque command additional value (always constant) and the dynamic friction compensation torque which is set according to positive/negative direction torque compensation value.

The command speed direction is reset upon power-up or when the motor is de-energized.

- Pr6. 07 [Torque command additional value] reduces variations in positioning operation (performance is affected by direction of movement). These variations occur when constant offset torque resulting from weight on vertical axis is applied to the motor.
- Certain loads such as belt driven shaft requires high dynamic friction torque, which lengthens positioning setting time or varies positioning accuracy. These problems can be minimized by setting the friction torque of every rotating direction into individual parameters. Pr6. 08 [Positive direction torque compensation value] and Pr6.09 [Negative direction torque compensation value] can be used for this purpose.

Caution ? The offset load compensation and dynamic friction compensation can be used individually or in combination. However, some control modes impose limit on application.

- For torque control: Offset load compensation and dynamic friction compensation are set at 0 regardless of parameter setting.
- For velocity control with servo-off: Offset load compensation per Pr6.07 is enabled. Dynamic friction compensation is set at 0 regardless of parameter setting.
- For position control or full closed control with servo-on: Previous offset load compensation and dynamic friction compensation values are maintained until the first positional command is applied where the offset load compensation value is updated according to Pr6.07. The dynamic friction compensation value is updated to parameters Pr.6.08 and Pr6.09 depending on command direction.

Outline

Inertia ratio can be switched between No. 1 and No. 2 by the switching input (J-SEL). This feature is useful in application where the load inertia changes in two steps.

Applicable Range

This function can be applicable only when the following conditions are satisfied.

	Conditions under which the Inertia ratio switching function is activated
Control mode	- Can be used in all control modes. Pro. $01=0$: Position control Pr0.01 = 1 : Velocity control Pro. $01=2$: Torque control Pro. $01=3$: Position/Velocity control Pro. $01=4$: Position/Torque control Pr0.01 $=5$: Velocity/Torque control Pro. $01=6$: Full-closed control
Others	- Should be in servo-on condition - Input signals such as the deviation counter clear and command input inhibit, and parameters except for controls such as torque limit setup, are correctly set, assuring that the motor can run smoothly. - Real-time auto-tuning should be disabled. (Pro.02=0) - Adaptive filter should be disabled. (Pr2.00=0) - Instantaneous speed observer should be disabled. (Pr6.10 bit0=0) - Disturbance observer should be disabled. (Pr6.24=0 bit1=0)

Caution

- Be sure to change the inertia ratio while the motor is in stop state. Otherwise, vibration or oscillation will occur.
- If the difference between the 1st inertia ratio and 2nd inertia ratio is large, vibration, etc., may occur even in stop mode. These potential problems should be identified on the actual model.

Related Parameter

Combine the following 3 parameters to setup appropriate inertia ratio switching function.

Class	No.	Title	Function
6	10	Function expansion setup	Sets bits related to inertia ratio switching function. bit1 0: Invalid 1: Valid bit2 0: Always valid 1: Valid only when 1st gain is selected. $\text { * bit } 0=\text { LSB }$ Example) To enable inertial ratio switching Setup value $=8$
0	04	Inertia ratio	Set 1st inertia ratio. You can set up the ratio of the load inertia against the rotor (of the motor) inertia.
6	13	2nd Inertia ratio	Set 2nd inertia ratio. You can set up the ratio of the load inertia against the rotor (of the motor) inertia.

- Select 1 st inertia ratio or 2nd inertia ratio according to the inertia ratio select input (J-SEL).

Inertia ratio switching input (J-SEL)	Applicable inertia ratio
OFF	1st Inertia ratio (Pro.04)
ON	2nd Inertia ratio (Pr6.13)

5. Manual Gain Tuning (Application)

Hybrid vibration damping function

Outline

This function suppresses vibration due to amount of twist between the motor and load in the full closed control mode. This function enables high gain setting.

Applicable range

This function can be applicable only when the following conditions are satisfied.

	Conditions under which the Hybrid vibration damping function is activated
Control mode	• Full-closed control mode
Others	• Should be in servo-on condition • Input signals such as the deviation counter clear and command input inhibit, and parameters except for controls such as torque limit setup, are correctly set, assuring that the motor can run smoothly.

Caution

The effect of this function will be proportional to the amount of twist between the motor and load.

Related Parameter

Class	No.	Title	Function
6	34	Hybrid vibration suppression gain	Set up the hybrid vibration suppression gain for full-closed controlling. First set it to the value identical to that of poison loop gain, and then fine tune as necessary.
6	35	Hybrid vibration suppression filter	Set up the time constant of the hybrid vibration suppression filter for full-closed controlling.

How to Use

[1] Set Pr6.34 Hybrid vibration suppression gain to the value equal to that of positional loop gain.
[2] Driving under full closed control, gradually increase the setup value of Pr6.35 Hybrid vibration suppression filter while checking response change.
When the response is improved, adjust Pr6.34 and Pr6.35 to determine the combination that provides the best response.

[^69]- In homing action by using the host controller, stop position might not be stabilized if the origin input (Z-phase of the encoder) is entered while the motor is not decelerated enough after the proximity input is turned on. Set up the ON-positions of proximity input and the position of origin point, considering the necessary pulse counts for deceleration. Take the positioning action and homing action into account when you set put acceleration/deceleration time with parameter, since this affect these action as well.
For the details of homing, observe the instruction manual of the host controller.

- Example of Homing Action

Proximity dog on... .Decelerates at an entry of the proximity input, and stops at an entry of the first origin input (Z-phase)

Proximity dog off... .Decelerates at an entry of the proximity input, and stops at an entry of the first origin input (Z-phase) after the input is tuned off

You can set up the homing position with "Hit \& Stop" where it is not easy to install a sensor due to environment.
(1) when you make a point where the work (load) hits as an origin

(2) when you stop the work (load) using Z-phase after making a hitting point as a starting point, then make that stopping point as an origin.

Parameter No.	Title	Setup example
5.22	Setup of 2nd torque limit	50 (Set up to less than $100 \%)$
0.14	Excess setup of position deviation	25000
5.13	Setup of over-speed level	$0(6000 \mathrm{r} / \mathrm{min})$
5.21	Selection of torque limit	3

Assign TL-SEL to the input signal.
Upon completion of the homing with hit and stop, turn off TL-SEL (open if logical setting is a-contact; close if b-contact).

6. About Homing Operation

Press \& Hold Control

Application example

Press fit
machine

\square

\qquad

6. When in Trouble

1. When in Trouble

What to Check ?

6-2Protective Function (What is Error Code ?) 6-2
Protective function (Detail of error code) 6-4
2. Setup of gain pre-adjustment protection 6-18
3. Troubleshooting
Motor Does Not Run 6-21
Unstable Rotation (Not Smooth), Motor Runs Slowly Even with Speed Zero at Velocity Control Mode 6-23
Positioning Accuracy Is Poor 6-24
Origin Point Slips 6-25
Abnormal Motor Noise or Vibration 6-25
Overshoot/Undershoot,
Overheating of the Motor (Motor Burn-Out) 6-26
Motor Speed Does Not Reach to the Setup,
Motor Revolutions (Travel) Is Too Large or Small 6-26
Parameter Returns to Previous Setup 6-27

1. When in Trouble

When in Trouble

- Various protective functions are equipped in the driver. When these are triggered, the motor will stall due to error, the driver will turn the Servo-Alarm output (ALM) to off (open).
- Error status and their measures
- During the error status, the error code No. will be displayed on the front panel LED, and you cannot turn Servo-ON.
- You can clear the error status by Alarm clear input(A-CLR) in 120 ms or longer.
- When overload protection is triggered, you can clear it by Alarm clear input (A-CLR) in 10 sec or longer after the error occurs. (*1 Table below) You can clear the Overload protection time characteristics (refer to P.6-14) by turning off the control power supply between L1C and L2C $(100 \mathrm{~V}, 200 \mathrm{~V}), 24 \mathrm{~V}$ and $0 \mathrm{~V}(400 \mathrm{~V})$ of the driver.
- You can clear the above error by operating the front panel keys and setup support softwear "PANATERM". Refer to P.2-109 "Alarm Clear Screen" of Preparation.
- Be sure to clear the alarm during stop after removing the cause of the error and securing safety.

[^70]
<List of error code No.>

Error code		Protective function	Attribute			Detail page	Error code		Protective function	Attribute			Detail page
Main	Sub		History	Can be cleared	$\begin{aligned} & \text { Immediate } \\ & \text { stop } \end{aligned}$		Main	Sub		History	Can be cleared	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Immediate } \\ \text { stop } \end{array} \\ \hline \end{array}$	
11	0	Control power supply undervoltage protection		\bigcirc		6-4	34	0	Software limit protection	\bigcirc	\bigcirc		
12	0	Over-voltage protection	\bigcirc	\bigcirc			36	2	tection				
13	0	Main power supply under-voltage protection (between P and N)		\bigcirc			37	$\begin{gathered} 0 \text { to } \\ 2 \end{gathered}$	EEPROM check code error protection				6-10
	1	Main power supply under-					38	0	Over-travel inhibit input protection		\bigcirc		
		voltage protection		\bigcirc			39	0	Analog input1 excess protection	\bigcirc	\bigcirc	\bigcirc	
		(AC interception detection)						1	Analog input2 excess protection	\bigcirc	\bigcirc	\bigcirc	
14	0	Over-current protection	\bigcirc			6-5		2	Analog input3 excess protection	\bigcirc	\bigcirc	\bigcirc	
	1	IPM error protection	\bigcirc						Absolute system down error				6-11
15	0	Over-heat protection	\bigcirc		\bigcirc		40	0	protection	\bigcirc	\bigcirc		
16	0	Over-load protection	\bigcirc	$\bigcirc{ }^{*}$		6-6	41	0	Absolute counter over error	\bigcirc			
18	0	Over-regeneration load protection	\bigcirc		\bigcirc		41	0	protection	\bigcirc			
	1	Over-regeneration Tr error protection	\bigcirc			6-7	42	0	Absolute over-speed error protection	\bigcirc	\bigcirc		
21	0	Encoder communication dis					43	0	Initialization failure	\bigcirc			
	0	connect error protection	\bigcirc				44	0	Absolute single turn counter	\bigcirc			
	1	Encoder communication error protection	\bigcirc				45	0	error protection Absolute multi-turn counter er-	\bigcirc			
23	0	Encoder communication data error protection	\bigcirc				47	0	ror protection	\bigcirc			
24	0	Position deviation excess pro-	\bigcirc	\bigcirc	\bigcirc		48	0	Encoder Z-phase error protection	\bigcirc			
		tection	\bigcirc	\bigcirc	\bigcirc		49	0	Encoder CS signal error protection	\bigcirc			6-12
	1	Velocity deviation excess protection	\bigcirc	\bigcirc	\bigcirc		50	0	Feedback scale connection error protection	\bigcirc			
25	0	Hybrid deviation excess error protection	\bigcirc		\bigcirc	6-8		1	Feedback scale communication error protection	\bigcirc			
26	0	Over-speed protection	\bigcirc	\bigcirc	\bigcirc		51	0	Feedback scale status 0 error	\bigcirc			
	1	2nd over-speed protection	\bigcirc	\bigcirc				0	protection	\bigcirc			
27	0	Command pulse input frequency error protection	\bigcirc	\bigcirc	\bigcirc			1	Feedback scale status 1 error protection	\bigcirc			
	2	Command pulse multiplier error protection	\bigcirc	\bigcirc	\bigcirc			2	Feedback scale status 2 error protection	\bigcirc			
28	0	Limit of pulse replay error protection	\bigcirc	\bigcirc	\bigcirc			3	Feedback scale status 3 error protection	\bigcirc			
29	0	Deviation counter overflow protection	\bigcirc	\bigcirc		6-9		4	Feedback scale status 4 error protection	\bigcirc			
30	0	Safety detection		\bigcirc				5	Feedback scale status 5 error	\bigcirc			
33	0	IF overlaps allocation error 1 protection	\bigcirc				55	0	protection	\bigcirc			6-13
	1	IF overlaps allocation error 2	-					1	B-phase connection error protection	\bigcirc			
	1	protection	\bigcirc					2	Z-phase connection error protection	\bigcirc			
	2	IF input function number error 1	\bigcirc				87	0	Compulsory alarm input protection		\bigcirc		
	2	protection	\bigcirc				95	0 to 4	Motor automatic recognition				
	3	IF input function number error 2 protection	\bigcirc				99	0	error protection	\bigcirc			
	4	IF output function number error 1 protection	\bigcirc				Other number		Other error	\bigcirc			
	5	IF output function number error 2 protection	\bigcirc										
	6	CL fitting error protection	\bigcirc			6-10							
	7	INH fitting error protection	\bigcirc										

Note ... History...The error will be stored in the error history.
Can be cleared... To cancel the error, use the alarm clear input (A-CLR).
If the alarm clear input is not effective, turn off power, remove the cause of the error and then turn on power again.
Immediate stop...Instantaneous controlled stop upon occurrence of an error.
(Setting of "Pr.5.10 Sequence at alarm" is also required.)
Note •Only for position control type is not provided with X2, X3, X5 and analog input.

1. When in Trouble

Protective function	Error code No.		Causes	Measures
	Main	Sub		
Control power supply undervoltage protection	11	0	Voltage between P and N of the converter portion of the control power supply has fallen below the specified value. 100 V version: approx. 70 VDC (approx. 50 VAC) 200 V version: approx. 145 VDC (approx. 100 VAC) 400 V version: approx. 15 VDC 1) Power supply voltage is low. Instantaneous power failure has occurred 2) Lack of power capacity...Power supply voltage has fallen down due to inrush current at the main power-on. 3) Failure of servo driver (failure of the circuit)	Measure the voltage between lines of connector and terminal block. 100V, 200V driver: L1C - L2C 400V driver: 24 V - 0 V 1) Increase the power capacity. Change the power supply. 2) Increase the power capacity. 3) Replace the driver with a new one.
Over-voltage protection	12	0	Voltage between P and N of the converter portion of the control power supply has exceeded the specified value 100 V version: approx. 200 VDC (approx. 140 VAC) 200 V version: approx. 400 VDC (approx. 280 VAC) 400 V version: approx. 800 VDC (approx. 560 VAC) 1) Power supply voltage has exceeded the permissible input voltage. Voltage surge due to the phase-advancing capacitor or UPS (Uninterruptible Power Supply) have occurred. 2) Disconnection of the regeneration discharge resistor 3) External regeneration discharge resistor is not appropriate and could not absorb the regeneration energy. 4) Failure of servo driver (failure of the circuit)	Measure the voltage between lines of connector (L1, L2 and L3). 1) Enter correct voltage. Remove a phaseadvancing capacitor. 2) Measure the resistance of the external resistor connected between terminal B1 - B2 of the driver. Replace the external resistor if the value is ∞. 3) Change to the one with specified resistance and wattage. 4) Replace the driver with a new one.
Main power supply undervoltage protection (PN)	13	0	Instantaneous power failure has occurred between L1 and L3 for longer period than the preset time with Pr5.09 (Main power off detecting time) while Pr5.08 (LV trip selection at the main power-off) is set to 1 . Or the voltage between P and N of the converter portion of the main power	Measure the voltage between lines of connector (L1, L2 and L3).
Main power supply undervoltage protection (AC)		1	supply has fallen below the specified value during Servo-ON. 100 V version: approx. 80 VDC (approx. 55 VAC) 200 V version: approx. 110 VDC (approx. 75 VAC) 400 V version: approx. 180 VDC (approx. 125 VAC) 1) Power supply voltage is low. Instantaneous power failure has occurred 2) Instantaneous power failure has occurred. 3) Lack of power capacity...Power supply voltage has fallen down due to inrush current at the main power-on. 4) Phase lack...3-phase input driver has been operated with single phase input. 5) Failure of servo driver (failure of the circuit)	1) Increase the power capacity. Change the power supply. Remove the causes of the shutdown of the magnetic contactor or the main power supply, then re-enter the power. 2) Set up the longer time to Pr5. 09 (Main power off detecting time). Set up each phase of the power correctly. 3) Increase the power capacity. For the capacity, refer to P.2-10, "Driver and List of Applicable Peripheral Equipments" of Preparation. 4) Connect each phase of the power supply (L1, L2 and L3) correctly. For single phase, 100 V and 200 V driver, use L1 and L3. 5) Replace the driver with a new one.

Protective function	Error code No.		Causes	Measures
	Main	Sub		
Over-current protection	14	0	Current through the converter portion has exceeded the specified value. 1) Failure of servo driver (failure of the circuit, IGBT or other components) 2) Short of the motor wire (U, V and W)	1) Turn to Servo-ON, while disconnecting the motor. If error occurs immediately, replace with a new driver. 2) Check that the motor wire (U, V and W) is not shorted, and check the branched out wire out of the connector. Make a correct wiring connection. 3) Measure the insulation resistance between motor wires, U, V and W and earth wire. In case of poor insulation, replace the motor. 4) Check the balance of resister between each motor line, and if unbalance is found, replace the motor. 5) Check the loose connectors. If they are, or pulled out, fix them securely. 6) Replace the servo driver. Do not use Servo-ON/Servo-OFF as a means of staring/stopping the operation. 7) Enter the pulses 100 ms or longer after Servo-ON. 8) Replace the driver.
IPM error protection IPM: Intelligent Power Module		1		
			3) Earth fault of the motor wire	
			4) Burnout of the motor	
			5) Poor contact of the motor wire.	
			6) Welding of contact of dynamic braking relay due to frequent servo ON/OFF operations.	
			7) Timing of pulse input is same as or earlier than Servo-ON. 8) Blowout of thermal fuse due to overheating dynamic brake circuit. (Only F and G frames)	
Over-heat protection	15	0	Temperature of the heat sink or power device has been risen over the specified temperature.	
			1) Ambient temperature has risen over the specified temperature. 2) Over-load	1) Improve the ambient temperature and cooling condition. 2) Increase the capacity of the driver and motor. Set up longer acceleration/ deceleration time. Lower the load.

Note

 - When protective function marked with *in the protective function table is activated, it can-not be disabled by the alarm clear input (A-CLR). To return to the normal operation, turn off
power, remove the cause, and then turn on power again.

Related page \cdots :

- P.2-12 "System Configuration and Wiring" • P.4-45 "Details of parameter"

Note

- When protective function marked with * in the protective function table is activated, it cannot be disabled by the alarm clear input (A-CLR). To return to the normal operation, turn off power, remove the cause, and then turn on power again.

Protective function	Error code No.		Causes	Measures
	Main	Sub		
Regenerative transistor error protection	18	1	Regenerative driver transistor on the servo driver is defective.	Replace the driver.
Encoder communication disconnection error protection	21	0	Communication between the encoder and the driver has been interrupted in certain times, and disconnection detecting function has been triggered.	Make a wiring connection of the encoder as per the wiring diagram. Correct the miswiring of the connector pins.
Encoder communication error protection		1	Communication error has occurred in data from the encoder. Mainly data error due to noise. Encoder cables are connected, but communication data has some errors.	- Secure the power supply for the encoder of DC4.90V to 5.25 V)...pay an attention especially when the encoder cables are long. - Separate the encoder cable and the motor
Encoder communication data error protection	23	0	Data communication between the encoder is normal, but contents of data are not correct. Mainly data error due to noise. Encoder cables are connected, but communication data has some errors.	- Connect the shield to FG.
Position deviation excess protection	24	0	Deviation pulses have exceeded the setup of Pro. 14. 1) The motor movement has not followed the command. 2) Setup value of Pro. 14 (Position deviation excess setup) is small.	1) Check that the motor follows to the position command pulses. Check that the output toque has not saturated in torque monitor. Make a gain adjustment. Set up maximum value to Pr0.13 and Pr5.22. Make a encoder wiring as per the wiring diagram. Set up the longer acceleration/deceleration time. Lower the load and speed. 2) Set up a larger value to PrO.14.
Velocity deviation excess protection		1	The difference between the internal positional command speed and actual speed (speed deviation) exceeds the setup vale of Pr6.02. Note) If the internal positional command speed is forcibly set to 0 due to instantaneous stop caused by the command pulse inhibit input (INH) or CW/CCW over-travel inhibit input, the speed deviation rapidly increases at this moment. Pr6.02 setup value should have sufficient margin because the speed deviation also largely increases on the rising edge of the internal positional command speed.	- Increase the setup value of Pr6.02. - Lengthen the acceleration/deceleration time of internal positional command speed, or improve the follow-up characteristic by adjusting the gain. - Disable the excess speed deviation detection (Pr6.02 = 0).

Protective function	Error code No.		Causes	Measures
	Main	Sub		
Hybrid deviation excess error protection	25	0	- Position of load by the external scale and position of the motor by the encoder slips larger than the setup pulses with Pr3. 28 (Setup of hybrid deviation excess) at full-closed control. - During full closed control, numerator of command division/multiplication is changed or switched over.	- Check the connection between the motor and the load. - Check the connection between the external scale and the driver. - Check that the variation of the motor position (encoder feedback value) and the load position (external scale feedback value) is the same sign when you move the load. Check that the numerator and denominator of the external scale division (Pr3.24 and 3.25) and reversal of external scale direction (Pr3.26) are correctly set. - Do not change command division/ multiplication during full closed control.
Over-speed protection	26	0	The motor rotational speed has exceeded the setup value of Pr5.13.	- Do not give an excessive speed command. - Check the command pulse input frequency
2nd Over- speed protection		1	The motor rotational speed has exceeded the setup value of Pr6.15.	- Make a gain adjustment when an overshoot has occurred due to a poor gain adjustment. - Make a wiring connection of the encoder as per the wiring diagram.
Command pulse input frequency error protection	27	0	The frequency of command pulse input is more than 1.2 times the setting in Pr5.32.	Check the command pulse input for frequency.
Electronic gear error protection		2	Division and multiplication ratio which are set up with the command pulse counts per single turn and the1st and the 4th numerator/denominator of the electronic gear are not appropriate. The command pulses per 0.167 ms multiplied by the command division and multiplication ratio exceeds 3000 Mpps . The command pulse input fluctuates. Noises mixed with the command pulse input cause counting error.	- Set the command division and multiplication ratio to a value as small as possible e.g. between 1/1000 and 1000. - Check the setup value of electronic gear. - If possible, use the line driver I/F. - Set Pr5.32 (setting of max. command pulse input) to a value less than 1000 and enable digital filter.
Pulse regeneration limit protection	28	0	The output frequency of pulse regeneration has exceeded the limit.	- Check the setup values of Pr0.11 and 5.03. - To disable the detection, set Pr5.33 to 0.

| Protective
 function | Error code No. | Causes | Measures |
| :--- | :---: | :---: | :--- | :--- | :--- | not be disabled by the alarm clear input (A-CLR). To return to the normal operation, turn off power, remove the cause, and then turn on power again.

- Only for position control type is not provided with X3 and anlaog input.

Protective function	Error code No.		Causes	Measures
	Main	Sub		
CL assignment error	33	6	Counter clear function is assigned to a signal number other than SI7.	Allocate correct function to each connector pin.
INH assignment error		7	Command pulse inhibit input function is assigned to a signal number other than SIIO.	
Software limit protection	34	0	When a position command within the specified input range is given, the motor operates outside its working range specified in Pr5.14. 1) Gain is not appropriate. 2) Pr5.14 setup value is low.	1) Check the gain (balance between position loop gain and speed loop gain) and inertia ratio. 2) Increase the setup value of Pr5.14. Or, Set Pr5. 14 to 0 to disable the protective function.
EEPROM parameter error protection	36	0	Data in parameter storage area has been damaged when reading the data from EEPROM at power-on.	- Set up all parameters again. - If the error persists, replace the driver (it may be a failure.) Return the product to the dealer or manufacturer.
		1		
		2		
EEPROM check code error protection	37	0	Data for writing confirmation to EEPROM has been damaged when reading the data from EEPROM at power-on.	Replace the driver. (it may be a failure). Return the product to a dealer or manufacturer.
		1		
		2		
Over-travel inhibit input protection	38	0	With Pr5.04, over-travel inhibit input setup $=0$, both positive and negative over-travel inhibit inputs (POT/NOT) have been ON. With Pr5.04 = 2, positive or negative over-travel inhibit input has turned ON.	Check that there are not any errors in switches, wires or power supply which are connected to positive direction/ negative direction over-travel inhibit input. Check that the rising time of the control power supply (DC12 to 24 V) is not slow.
Analog input 1 (Al1) excess protection	39	0	Higher voltage has been applied to the analog input 1 than the value that has been set by Pr4.24.	- Set up Pr4. 24 correctly. Check the connecting condition of the connector X4. - Set up Pr4.24 to 0 and invalidate the protective function.
Analog input 2 (AI2) excess protection		1	Higher voltage has been applied to the analog input 2 than the value that has been set by Pr4.27.	- Set up Pr4. 27 correctly. Check the connecting condition of the connector X4. - Set up Pr4.27 to 0 and invalidate the protective function.
Analog input 3 (Al3) excess protection		2	Higher voltage has been applied to the analog input 3 than the value that has been set by Pr4.30.	- Set up Pr4.30 correctly. Check the connecting condition of the connector X4. - Set up Pr4.30 to 0 and invalidate the protective function.

Note
 - Only for position control type is not provided with analog input.

Protective function	Error code No.		Causes	Measures
	Main	Sub		
Absolute system down error protection	40	0	Voltage of the built-in capacitor has fallen below the specified value because the power supply or battery for the absolute encoder has been down. Caution …\% Once this error occurs, encoder is reset.	After connecting the power supply for the battery, clear the absolute encoder. e alarm cannot be cleared until the absolute
Absolute counter over error protection	41	0	Multi-turn counter of the absolute encoder has exceeded the specified value.	- Set Pro. 15 to 2 to ignore the multi-turn counter over. - Limit the travel from the machine origin within 32767 revolutions.
Absolute overspeed error protection	42	0	The motor speed has exceeded the specified value when only the supply from the battery has been supplied to 17-bit encoder during the power failure. Caution … Once this error occurs, encoder is reset.	- Check the supply voltage at the encoder side ($5 \mathrm{~V} \pm 5 \%$) - Check the connecting condition of the connector X2. e alarm cannot be cleared until the absolute
Encoder initialization error protection *1	43	0	Encoder initialization error was detected.	Replace the motor.
Absolute single turn counter error protection *1	44	0	Absolut: single turn counter error protection incremental: single turn counter error protection	Replace the motor.
Absolute multi-turn counter error protection *1	45	0	Absolut: multi-turn counter error protection incremental: single turn counter error protection	Replace the motor.
Absolute status error protection *1	47	0	Encoder has been running at faster speed than the specified value at poweron.	Arrange so as the motor does not run at power-on.
Encoder Z-phase error protection*1	48	0	Missing pulse of Z-phase of serial incremental encoder has been detected. The encoder might be a failure.	Replace the motor.

Protective function	Error code No.		Causes	Measures
	Main	Sub		
Encoder CS signal error protection*1	49	0	CS signal logic error of serial incremental encoder has been detected. The encoder might be a failure.	Replace the motor.
Feedback scale wiring error protection	50	0	Communication between the external scale and the driver has been interrupted in certain times, and disconnection detecting function has been triggered.	- Make a wiring connection of the external scale as per the wiring diagram. - Correct the miswiring of the connector pins.
External communication data error protection		1	Communication error has occurred in data from the external scale. Mainly data error due to noise. External scale cables are connected, but communication date has some error.	- Secure the power supply for the external scale of DC $5 \pm 5 \%$ (4.75 to 5.25 V)...pay attention especially when the external scale cables are long. - Separate the external scale cable and the motor cable if they are bound together. - Connect the shield to FG...refer to wiring diagram.
External scale status 0 error protection *1	51	0	Bit 0 of the external scale error code (ALMC) has been turned to 1 . Check the specifications of the external scale.	Remove the causes of the error, then clear the external scale error from the front panel. And then, shut off the power to reset.
External scale status 1 error protection *1		1	Bit 1 of the external scale error code (ALMC) has been turned to 1 . Check the specifications of the external scale.	
External scale status 2 error protection *1		2	Bit 2 of the external scale error code (ALMC) has been turned to 1 . Check the specifications of the external scale.	
External scale status 3 error protection *1		3	Bit 3 of the external scale error code (ALMC) has been turned to 1 . Check the specifications of the external scale.	
External scale status 4 error protection *1		4	Bit 4 of the external scale error code (ALMC) has been turned to 1 . Check the specifications of the external scale.	
External scale status 5 error protection *1		5	Bit 5 of the external scale error code (ALMC) has been turned to 1 . Check the specifications of the external scale.	

- When protective function marked with * in the protective function table is activated, it cannot be disabled by the alarm clear input (A-CLR). To return to the normal operation, turn off power, remove the cause, and then turn on power again.
- Only for position control type is not provided with X5.

Protective function	Error code No.		Causes	Measures
	Main	Sub		
A-phase wiring error protection	55	0	A-phase wiring in the external scale is defective, e.g. discontinued.	Check the A-phase wiring connection.
B-phase wiring error protection		1	B-phase wiring in the external scale is defective, e.g. discontinued.	Check the B-phase wiring connection.
Z-phase wiring error protection		2	Z-phase wiring in the external scale is defective, e.g. discontinued.	Check the Z-phase wiring connection.
Forced alarm input protection	87	0	Forced alarm input (E-STOP) is applied.	Check the wiring of forced alarm input (E-STOP).
Motor automatic recognition error protection	95	0 to 4	The motor and the driver has not been matched.	Replace the motor which matches to the driver.
Other error	99	0	Excessive noise or the like is detected as an abnormal signal. This type of error will occur if the alarm clear is attempted while the safety input $1 /$ safety input 2 is not in normal state (input photocoupler is ON).	- Turn off the power once, then re-enter. - If error repeats, this might be a failure. Stop using the products, and replace the motor and the driver. Return the products to the dealer or manufacturer. - Adjust the condition of the safety input $1 /$ safety input 2 and then start the alarm clear.
	Other No.		Control circuit has malfunctioned due to excess noise or other causes. Some error has occurred inside of the driver while triggering self-diagnosis function of the driver.	- Turn off the power once, then re-enter. - If error repeats, this might be a failure. Stop using the products, and replace the motor and the driver. Return the products to the dealer or manufacturer.

Time characteristics of Err16.0 (Overload protection)

Caution …s. Use the motor so that actual torque stays in the continuous running range shown in " $\mathrm{S}-\mathrm{T}$ characteristic" of the motor. For the S-T characteristics, see P.7-55 Motor characteristics (S-T characteristics).

Software Limit Function (Err34.0)

1) Outline

You can make an alarm stop of the motor with software limit protection (Err34.0) when the motor travels exceeding the movable range which is set up with Pr5. 14 (Motor working range setup) against the position command input range.
You can prevent the work from colliding to the machine end caused by motor oscillation.

2) Applicable range

This function works under the following conditions.

	Conditions under which the software limit works
Control mode	- Position control, Full-closed control
Others	- Should be in servo-on condition - Input signals such as the deviation counter clear and command input inhibit, and parameters except for controls such as torque limit setup, are correctly set, assuring that the motor can run smoothly.

3) Cautions

- This function is not a protection against the abnormal position command.
- When this software limit protection is activated, the motor decelerates and stops according to Pr5. 10 (sequence at alarm).
The work (load) may collide to the machine end and be damaged depending on the load during this deceleration, hence set up the range of Pr5. 14 including the deceleration movement.
- This software limit protection will be invalidated during the trial run and frequency characteristics functioning of the PANATERM.

4) Example of movement

(1) When no position command is entered (Servo-ON status),

The motor movable range will be the travel range which is set at both sides of the motor with Pr5.14 since no position command is entered. When the load enters to the Err34.0 occurrence range (oblique line range), software limit protection will be activated.

(2) When the load moves to the right (at Servo-ON),

When the position command to the right direction is entered, the motor movable range will be expanded by entered position command, and the movable range will be the position command input range $+\operatorname{Pr} 5.14$ setups in both sides.

(3) When the load moves to the left (at Servo-ON),

When the position command to the left direction, the motor movable range will be expanded further.

5) Condition under which the position command input range is cleared

The position command input range will be 0 -cleared under the following conditions.

- when the power is turned on.
- while the position deviation is being cleared (Deviation counter clear is valid, Pr5. 05 (Sequence at over-travel inhibition) is 2 and over-travel inhibition input is valid.)
- At the beginning and ending of trial run via communication.

Related page ...?: P. P-43 ... "Details of parameter"

Warning Function

When an error condition e.g. overloading occurs, the alarm code is issued to indicate that the corresponding protective function will be triggered if suitable corrective action is not taken. The alarm will be cleared as the cause of the error is removed. However, certain alarm will remain latched for predetermined period as shown in the table below. To forcibly clear the alarm, take the normal alarm clear procedure.

Alarm	Alarm No.	Pr6.27 ${ }^{* 1}$	Content
Overload protection	A0	\bigcirc	Load factor is 85\% or more the protection level.
Over-regeneration alarm	A1	\bigcirc	Regenerative load factor is 85% or more the protection level.
Battery alarm	A2	Fixed at no time limit.	Battery voltage is 3.2 V or lower.
Fan alarm	A3	\bigcirc	Fan has stopped for 1 sec. *2
Encoder communication alarm	A4	\bigcirc	The number of successive encoder communication errors exceeds the specified value.
Encoder overheat alarm	A5	\bigcirc	The encoder detects overheat alarm.
Oscillation detection alarm	A6	\bigcirc	Oscillation or vibration is detected.
Lifetime detection alarm	A7	Fixed at no time limit.	The life expectancy of capacity or fan becomes shorter than the specified time.
External scale error alarm	A8	\bigcirc	The feedback scale detects the alarm.
External scale communication alarm	A9	\bigcirc	The number of successive feedback scale communication errors exceeds the specified value.

*1 The "circle" means that a time in the range 1 to 10 s or no time limit can be selected through Pr6.27 "Warning latching time". Note that the battery warning and the end of life warning have no time limit.
*2 The upper fan on the H -frame driver stops during servo OFF to save energy. This is normal and no fan alarm is displayed.
2. Setup of gain pre-adjustment protection

Before starting gain adjustment, set the following parameters based on the conditions of use, to assure safe operation.

1) Setup of over-travel inhibit input

By inputting the limit sensor signal to the driver, the bumping against mechanical end can be prevented. Refer to interface specification, positive/negative direction overtravel inhibit input (POT/NOT). Set the following parameters which are related to overtravel inhibit input.

Pr5.04 Setup of over-travel inhibit input
Pr5.05 Sequence at over-travel inhibit
P.3-38 (POT/NOT), P.4-43 (Pr5.04, Pr5.05)

2) Setup of torque limit

By limiting motor maximum torque, damage caused by failure or disturbance such as bite of the machine and collision will be minimized. To apply standardized limit through parameters, set Pr0.13 The 1st torque limit.
If the torque limit setup is lower than the value required during the actual application, the following two protective features will be triggered: over-speed protection when overshoot occurs, and excess positional deviation protection when response to the command delays.
By allocating the torque in-limit output (TLC) of interface specification to the output signal, torque limit condition can be detected externally.
P.3-46 (TLC), P.4-11 (Pr0.13), P.4-48 (Pr5.21)

3) Setup of over-speed protection

Generates Err26.0 Over-speed protection when the motor speed is excessively high. Default setting is the applicable motor maximum speed [r/min] $\times 1.2$.
If your application operates below the motor maximum speed, set Pr5.13 Setup of over-speed level by using the formula below.

```
Pr5.13 Setup of over-speed level = Vmax x (1.2 to 1.5)
Vmax: motor maximum speed [r/min] in operating condition
Factor in ( ) is margin to prevent frequent activation of over-speed protection.
```

When running the motor at a low speed during initial adjustment stage, setup the overspeed protection by multiplying the adjusting speed by a certain margin to protect the motor against possible oscillation.

Related page $\cdots \cdots$
 P.4-46 (Pr5.13)

(Continued ...)

4) Setup of the excess positional deviation protection

During the position control or full-closed control, this function detects potential excessive difference between the positional command and motor position and issues Err24.0 Excess positional deviation protection.
Excess positional deviation level can be set to Pr0. 14 Setup of positional deviation excess. The deviation can be detected through command positional deviation [pulse (command unit)] and encoder positional deviation [pulse (encoder unit)], and one of which can be selected by Pr5.20 Position setup unit select. (See the control block diagram.)
Default setting is 100000 [pulse (command unit)].
Because the positional deviation during normal operation depends on the operating speed and gain setting, fill the equation below based on your operating condition and input the resulting value to Pro.14.

- When Pr5.20 $=0$ (detection through command positional deviation)

Pr0.14 Setup of positional deviation excess $=\mathrm{Vc} / \mathrm{kp} \times(1.2$ to 2.0$)$
Vc: maximum frequency of positional command pulse [pulse (command unit)/s]
Kp: position loop gain [1/s]
Factor in () is margin to prevent frequent activation of excess positional deviation protection.

Note 1) When switching position loop gain Kp, select the smallest value for calculation.
Note 2) When using the positional command filter and damping control, add the following values.
Positional command smoothing filter: Vc \times filter time constant [s]
Positional command FIR filter: Vc \times filter time constant $[s] / 2$
Damping control: Vc/($\pi \times$ damping frequency $[\mathrm{Hz}])$

- When Pr5. $20=1$ (detection through encoder positional deviation, full-closed positional deviation)

Pr0. 14 Setup of positional deviation excess $=\mathrm{Ve} / \mathrm{Kp} \times(1.2$ to 2.0)
Ve: maximum operation frequency [pulse/s] in encoder unit or full-closed unit Kp : position loop gain [1/s]

Note 3) When switching position loop gain Kp, select the smallest value for calculation.
Note 4) When Pr5. 20 = 1, setups of positional command filter and damping control have no effect.

Related page $\cdots: \%$

P.4-11 (Pr0.14), P4-48 (Pr5.20)
5) Setup of motor working range

During the position control or full-closed control, this function detects the motor position which exceeds the revolutions set to Pr5.14 Motor working range setup, and issues Err34.0 Software limit protection.

Related page $\cdots \cdots \quad$ P. $4-46$ (Pr5.14)

6) Setup of hybrid deviation excess error protection

At the initial operation with full-closed control, operation failure may occur due to reverse connection of external scale or wrong external scale division ratio.
To indicate this type of defect, Err25.0 Hybrid deviation excess error protection is issued when the deviation of motor position (encoder unit) and load position (external scale unit) exceed Pr3.28 Setup of hybrid deviation excess.
Default setting is 16000 pulse (command unit). Because the deviation in normal operation varies with the operation speed and gain setup. Add a margin to this setting according to your operating condition.

Related page $\cdots \cdots$: P.4-32 (Pr3.28)

6
 3. Troubleshooting
 When in Trouble Motor Does Not Run

When the motor does not run, refer to P.2-100, "Display of Factor of No-Motor Running" of Preparation as well.

Classification	Causes		Measures
Parameter	Setup of the control mode is not correct	Check that the present control mode is correct with monitor mode of the front panel.	1) Set up Pro. 01 again. 2) Check that the input to control mode switching (C-MODE) of the Cnnector X4 is correct, when Pr0.01 is set to 3 to 5 .
	Selection of torque limit is not correct	Check that the external analog input (N-ATL/ $\mathrm{P}-\mathrm{ATL}$) is not used for the torque limit.	1) Set up Pr05.21 to 0 and apply $-9[\mathrm{~V}]$ to $\mathrm{N}-\mathrm{ATL}$ and +9 [V] to P-ATL when you use the external input. 2) Set up Pr05.21 to 1 and set up the max. value to Pr0. 13 when you use the parameter value.
	Setup of electronic gear is not correct. (Position/Fullclosed)	Check that the motor moves by expected revolution against the command pulses.	1) Check the setups of Pr0.09, PrO. 10 and Pr5.00 to Pr5.02 again. 2) Connect the electronic gear switching input (DIV) of Connector X 4 to COM-, or invalidate the division/ multiplication switching by setting up the same value to Pr0.09 and Pr5.00.
Wiring	Servo-ON input of Connector X 4 (SRV-ON) is open.	In the front panel monitor mode, is the Pin No. corresponding to SRVON in "- " state?	Check and make a wiring so as to connect the SRVON input to COM-.
	Positive/negative direction overtravel inhibit input of Connector X4 (NOT/POT) is open.	In the front panel monitor mode, is the Pin No. corresponding to NOT/ POT in " A" state?	1) Check and make a wiring so as to connect both NOT/POT inputs to COM-. 2) Set up Pr5.04 to 1 (invalid) and reset the power.
	Command pulse input setup is incorrect. (Position/Fullclosed)	Check that the input pulse counts and variation of command pulse sum does not slips, with monitor mode of the front panel.	1) Check that the command pulses are entered correctly to the direction selected with Pr0.05. 2) Check that the command pulses are entered correctly in the format selected with Pr0.07.
	Command pulse input inhibition (INH) of Connector X4 is open. (Position/ Full-closed)	In the front panel monitor mode, is the Pin No. corresponding to INH in " A " state?	1) Check and make a wiring so as to connect the INH input to COM-. 2) Set up Pr5.18 to 1 (invalid).
	Counter clear input (CL) of Connector X4 is connected to COM-. (Position/ Full-closed)	In the front panel monitor mode, is the Pin No. corresponding to CL in "A" state?	1) Check and make wiring so as to open the CL input 2) Set up Pr5. 17 to 0 (invalid).

[^71]When the motor does not run, refer to P.2-100, "Display of Factor of No-Motor Running" of Preparation as well.

Classification		Causes	Measures
Wiring	Speed command is invalid (Velocity)	Check that the velocity command input method (external analog command/internal velocity command) is correct.	1) Check the setups of Pr3.02 to Pr3.03 again by setting up Pr3. 00 to 0 , when you use the external analog command. 2) Set up Pr3.04 to Pr3.07 and Pr3.08 to Pr3.11 by setting up Pr3.00 to either one of 1,2 or 3 , when you use the internal speed command.
	Speed zero clamp input (ZEROSPD) of Connecter X 4 is open. (Velocity/Torque)	In the front panel monitor mode, is the Pin No. corresponding to ZEROSPD in " A " state?	1) Check and make wiring so as to connect speed zero clamp input to COM-. 2) Set up Pr3.15.
	Torque command is invalid (Torque)	Check that the torque command input method (SPR/TRQR input, P -ATL/TRQR input) is correct.	1) Check that the input voltage is applied correctly by setting up Pr3.17 to 0 , when you use SPR/TRQR input. 2) Check that the input voltage is applied correctly by setting up Pr3. 17 to 1 , when you use the P-ATL/ TRQR input.
	Velocity control is invalid (Torque)	Check that the velocity limit input method (parameter velocity, SPR/ TRQR/SPL input) is correct.	1) Set up the desired value to Pr3.21 by setting up Pr3. 17 to 0, when you use the parameter speed. 2) Check that the input voltage is applied correctly by setting up Pr3.17 to 1, when you use the SPR/ TRQR/SPL input.
Installation	Main power is shut off.	In the front panel monitor mode, is the Pin No. corresponding to S-RDY in " - " state?	Check the wiring/voltage of main power of the driver (L1, L2 and L3).
	The motor shaft drags, the motor does not run.	1)Check that you can turn the motor shaft, after turning off the power and separate it from the machine. 2)Check that you can turn the motor shaft while applying DC24V to the brake in case of the motor with electromagnetic brake.	If you cannot turn the motor shaft, consult with the dealer for repair.

Related page ...セ: •P.4-25... "Details of parameter" • P.3-30 "Inputs and outputs on connector X4"

Classification	Causes	Measures
Parameter	Setup of the control mode is not correct.	If you set up Pr0.01 to 1(Velocity control mode) by mistake at position control mode, the motor runs slowly at servo-ON due to speed command offset. Change the setup of Pr0.01 to 0 .
Adjustment	Gain adjustment is not proper.	Increase the setup of Pr1.01, 1st velocity loop gain. Enter torque filter of Pr1. 04 and increase the setup of Pr1.01 again.
	Velocity and position command are not stable.	Check the motor movement with connector X7 of the front panel or the waveform graphic function of the PANATERM. Review the wiring, connector contact failure and controller.
Wiring	Each input signal of Connector X 4 is chattering. 1) Servo-ON signal 2) Positive/Negative direction torque limit input signal 3) Deviation counter input signal 4) Speed zero clamp signal 5) Command pulse inhibition input	1) Check the wiring and connection between Pin29 and 41 of the Connector X 4 using the display function of I/O signal status. Correct the wiring and connection so that the Servo-ON signal can be turned on normally. Review the controller. 2) Check the wiring and connection between Pin-18 and 17, 16 and 17 of the Connector X4 using tester or oscilloscope. Correct the wiring and connection so that Positive/Negative direction torque limit input can be entered normally. 3) Check the wiring and connection between Pin-30 and 41 of the Connector X4 using display function of I/O signal status. Correct the wiring and connection so that the deviation counter input can be turned on normally. Review the controller. 4) Check the wiring and connection between Pin-26 and 41of the Connector X4 using Display function of I/O signal status. Correct the wiring and connection so that the speed zero clamp input can be entered normally. Review the controller. 5) Check the wiring and connection between Pin-33 and 41 of the Connector X4 using display function of I/O signal status. Correct the wiring and connection so that the command pulse inhibition input can be entered normally. Review the controller.
	Noise is on the velocity command.	Use a shield cable for connecting cable to the Connector X4. Separate the power line and signal line (30 cm or longer) in the separate duct.
	Slip of offset	Check the voltage between Pin-14 and 15 (speed command input) using a tester or an oscilloscope.
	Noise is on the position command.	Use a shield cable for connecting cable to the Connector X4. Separate the power line and signal line (30 cm or longer) in the separate duct.

Classification	Causes	Measures
System	Position command is not correct. (Amount of command pulse)	Count the feedback pulses with a monitor function of the PANATERM or feedback pulse monitor mode of the console while repeating the movement of the same distance. If the value does not return to the same value, review the controller. Make a noise measure to command pulse.
	Captures the positioning complete signal at the edge.	Monitor the deviation at positioning complete signal reception with the Connector X7 or the waveform graphic function of the PANATERM. Make the controller capture the signal not at the edge but with some time allowance.
	Shape or width of the command pulse is not per the specifications.	If the shape of the command pulse is broken or narrowed, review the pulse generating circuit. Make a noise measure.
	Noise is superposed on deviation counter clear input CL (Connector X4, Pin-30).	Make a noise measure to external DC power supply and make no wiring of the unused signal lines.
Adjustment	Position loop gain is small.	Check the position deviation with the monitor function of the PANATERM or at the monitor mode of the console. Increase the setup of Pr1.00 within the range where no oscillation occurs.
Parameter	Setup of the positioning complete range is large.	Lower the setup of Pr4.31 within the range where no chattering of complete signal occurs.
	Command pulse frequency have exceeded 500kpps or 4Mpps.	Lower the command pulse frequency. Change the division/ multiplication ratio of 1st and 2nd numerator of command division/ multiplication, Pr0.09 and Pr0.10. Use a pulse line interface exclusive to line driver when pulse line interface is used.
	Setup of the division/ multiplication is not correct.	Check if the repetition accuracy is same or not. If it does not change, use a larger capacity motor and driver.
	Velocity loop gain is proportion action at motor in stall.	- Set up Pr1.02 and Pr1.07 of time constant of velocity loop integration to 9999 or smaller. - Review the wiring and connection so that the connection between Pin-27 and 41 of the gain switching input connector, Connector X4 becomes off while you set up Pr1.14 of 2nd gain setup, to 1 .
Wiring	Each input signal of Connector X 4 is chattering. 1) Servo-ON signal 2) Deviation counter clear input signal	1) Check the wiring and connection between Pin29 and 41 of the connector, Connector X4 using the display function of I/O signal status. Correct the wiring and connection so that the servo-On signal can be turned on normally. Review the controller. 2) Check the wiring and connection between Pin-30 and 41 of the connector, Connector X4 using display function of I/O signal status. Correct the wiring and connection so that the deviation counter clear input can be turned on normally. Review the controller.
	3) Positive/Negative direction torque limit input signal	3 Check the wiring and connection between Pin-18 and 17, 16 and 17 of the connector, Connector X4 using tester or oscilloscope. Correct the wiring and connection so that Positive/Negative direction torque limit input can be entered normally.
	4) Command pulse inhibition input	4) Check the wiring and connection between Pin-33 and 41of the connector, Connector X4 using display function of I/O signal status. Correct the wiring and connection so that the command pulse inhibition input can be entered normally. Review the controller.
Installation	Load inertia is large.	Check the overshoot at stopping with graphic function of the PANATERM. If no improvement is obtained, increase the driver and motor capacity.

[^72]3. Troubleshooting

Origin Point Slips

Classification	Causes	Measures
System	Z-phase is not detected.	Check that the Z-phase matches to the center of proximity dog. Execute the homing matching to the controller correctly.
	Homing creep speed is fast.	Lower the homing speed at origin proximity. Or widen the origin sensor.
Wiring	Chattering of proximity sensor (proximity dog sensor) output.	Check the dog sensor input signal of the controller with oscilloscope. Review the wiring near to proximity dog and make a noise measure or reduce noise.
	Noise is on the encoder line.	Reduce noise (installation of noise filter or ferrite core), shield treatment of I/F cables, use of a twisted pair or separation of power and signal lines.
	No Z-phase signal output.	Check the Z-phase signal with oscilloscope. Check that the Pin- 13 of the connector, connector X4 is connected to the earth of the controller. Connect the earth of the controller because the open collector interface is not insulated. Replace the motor and driver. Request for repair.
	Miswiring of Z-phase output.	Check the wiring to see only one side of the line driver is connected or not. Use a CZ output (open collector if the controller is not differential input.

Classification	Causes	Measures
Wiring	Noise is on the speed command.	Measure the speed command inputs of Pin-14 and 15 of the connector, Connector X4 with an oscilloscope. Reduce noise (installation of noise filter or ferrite core), shield treatment of I/F cables, use of a twisted pair, separation of power and signal lines.
Adjustment	Gain setup is large.	Lower the gain by setting up lower values to Pr1.01 and 1.06, of velocity loop gain and Pr1.00 and Pr1.05 of position loop gain.
Installation	Resonance of the machine and the motor.	Re-adjust Pr1.04 and 1.09. Check if the machine resonance exists or not with frequency characteristics analyzing function of the PANATERM. Set up the notch frequency to Pr2.01, Pr2.04, Pr2.07 or Pr2.10 if resonance exists.
	Motor bearing	Check the noise and vibration near the bearing of the motor while running the motor with no load. Replace the motor to check. Request for repair.
	Electro-magnetic sound, gear noise, rubbing noise at brake engagement, hub noise or rubbing noise of encoder.	Check the noise of the motor while running the motor with no load. Replace the motor to check. Request for repair.

3. Troubleshooting

When in Trouble

Overshoot/Undershoot, Overheating of the Motor (Motor Burn-Out)

Classification	Causes	Measures
Adjustment	Gain adjustment is not proper.	Check with graphic function of PANATERM or monitor (connector X7). Make a correct gain adjustment. Refer to "Adjustment".
Installation	Load inertia is large.	Check with graphic function of PANATERM or monitor (Connector X7). Make an appropriate adjustment. Increase the motor and driver capacity and lower the inertia ratio. Use a gear reducer.
	Looseness or slip of the machine.	Review the mounting to the machine.
	Ambient temperature, environment.	Lower the temperature with cooling fan if the ambient temperature exceeds the predications.
	Stall of cooling fan, dirt of fan ventilation duct.	Check the cooling fans of the driver and the machine. Replace the driver fan or request for repair. (The upper fan on the H-frame driver stops during servo OFF to save energy. This is normal.)
	Mismatching of the driver and the motor.	Check the name plates of the driver and the motor. Select a correct combination of them referring to the instruction manual or catalogue.
	Failure of motor bearing.	Check that the motor does not generate rumbling noise while turning it by hand after shutting off the power. Replace the motor and request for repair if the noise is heard.
	Electromagnetic brake is kept engaged (left un-released).	Check the voltage at brake terminals. Apply the power (DC24V) to release the brake.
Motor failure (oil, water or others)	Avoid the installation place where the motor is subject to high temperature, humidity, oil, dust or iron particles.	
Motor has been turned by external force while dynamic brake has been engaged.	Check the running pattern, working condition and operating status, and inhibit the operation under the condition of the left.	

3. Troubleshooting

When in Trouble

Classification	Causes	Measures
Parameter	Velocity command input gain is not correct.	Check that the setup of Pr3.02, speed command input gain, is made so as to make the setup of 500 makes $3000 \mathrm{r} / \mathrm{min} / 6 \mathrm{~V}$.
Adjustment	Position loop gain is low.	Set up Pr1.00and Pr1.05, position loop gain to approx. 1000.
	Division/Multiplication is not proper.	Set up correct values to Pro.09, 1st numerator of electronic gear, Pr0.11, numerator multiplier of electronic gear and Pr0.10, denominator of electronic gear. Refer to parameter setup at each mode.

[^73]| When in Trouble | | 3. Troubleshooting | |
| :---: | :---: | :---: | :---: |
| | | Parameter Returns to Previous Setup | |
| Classification | | uses | Measures |
| Parameter | No writing to E carried out befo power. | PROM has been e turning off the | Refer to P.2-107, "EEPROM Writing Mode" of Preparation. |

\qquad

7. Supplement

1. Safety function
Outline 7-2
Input \& output signals 7-3
Safety Circuit Block Diagram 7-5
Timing Chart 7-6
Example of connection 7-8
2. Absolute systemOutline7-10
Configuration 7-11
Battery (for Backup) Installation 7-12
Setup (Initialization) of Absolute Encoder 7-16
Transferring absolute data 7-16
Transferring external scale absolute data 7-21
Display of Battery Alarm 7-25
3.Outline of Setup Support Software, "PANATERM"
Setup on the PC 7-26
3. Communication
Outline 7-27
Specifications 7-28
List of Communication Command 7-39
Details of Communication Command 7-40
4. Motor Characteristics (S-T Characteristics) Motor 7-55
5. Dimensions
Driver A-frame, B-frame 7-73
C-frame, D-frame (200 V) 7-74
D-frame (400 V), E-frame (200 V) 7-75
E-frame (400 V), F-frame 7-76
G-frame 7-77
H -frame 7-78
Motor 7-79
6. Options
Noise Filter 7-94
Surge Absorber 7-98
Noise Filter for Signal Lines 7-99
Junction Cable for Encoder 7-100
Junction Cable for Motor (Without brake) 7-103
Junction Cable for Motor (With brake) 7-106
Junction Cable for Brake 7-108
Connector Kit 7-109
Battery For Absolute Encoder 7-118
Mounting Bracket 7-119
Reactor 7-120
External Regenerative Resistor 7-122
Recommended components(Surge absorber for motor brake) 7-124
List of Peripheral Equipments 7-125

Outline description of safe torque off (STO)

The safe torque off (STO) function is a safety function that shuts the motor current and turns off motor output torque by forcibly turning off the driving signal of the servo driver internal power transistor. For this purpose, the STO uses safety input signal and hardware (circuit).
When STO function operates, the servo driver turns off the servo ready output signal (S-RDY) and enters safety state.
This is an alarm condition and the 7 -seg LED on the front panel displays the error code number.

Safety precautions

- When using the STO function, be sure to perform equipment risk assessment to ensure that the system conforms to the safety requirements.
- Even while the STO function is working, the following potential safety hazards exist. Check safety in risk assessment.
- The motor may move when external force (e.g. gravity force on vertical axis) is exerted on it. Provide an external brake, etc., as necessary to secure the motor. Note that the purpose of motor with brake is holding and it cannot be used for braking application.
- When parameter Pr5.10 Sequence at alarm is set to free run (disable dynamic brake), the motor is free run state and requires longer stop distance even if no external force is applied. Make sure that this does not cause any problem.
- When power transistor, etc., becomes defective, the motor will move to the extent equivalent of 180 electrical angle (max.). Make sure that this does not cause any problem.
- The STO turns off the current to the motor but does not turn off power to the servo driver and does not isolate it. When starting maintenance service on the servo driver, turn off the driver by using a different disconnecting device.
- External device monitor (hereafter EDM) output signal is not a safety signal. Do not use it for an application other than failure monitoring.
- Dynamic brake and external brake release signal output are not related to safety function. When designing the system, make sure that the failure of external brake release during STO condition does not result in danger condition.
- When using STO function, connect equipment conforming to the safety standards.

[^74]
Safety input signal

For list of connector pin numbers, refer to P.2-53,

Signal	Symbol	Pin No.	Contents	Control mode
Safety input 1	SF1+	4	- Input 1 that triggers STO function. This input turns off the upper arm drive signal of power transistor. - When using the function, connect this pin in a way so that the photocoupler of this input circuit turns off to activate STO function.	
	SF1-	3	Compatible all control	
	SF2+	6	- Input 2 that triggers STO function. This input turns off the lower arm drive signal of power transistor. - When using the function, connect this pin in a way so that the photocoupler of this input circuit turns off to activate STO function.	
	SF2-	5		

<Response time>

Safety input 1 or 2 enables STO to operate: within 5 ms of response time, the motor output torque will be turned off.

Caution \cdots • Safety equipment self-diagnosis L pulse

Safety output signal from the safety controller and safety sensor may include L pulse for self-diagnosis.
To prevent the L pulse from mis-triggering STO function, the safety input circuit has built-in filter that removes the self-diagnosis L pulse.
Therefore, if the off period of safety input signal less than 1 ms , the safety input circuit does not detect this "off" event.
To validate this "off" period, turn off the input signal for more than 5 ms .

External device monitor (EDM) output signal

The monitor output signal is used by the external device to monitor the state of the safety input signal. Connect the monitor output to the external device monitor terminal of the safety devices such as safety controller and safety sensor.

Signal	Symbol	Pin No.	Contents	Control mode
EDM output	EDM+	8	Outputs monitor signal that is used to check the safety function.	Compatible all control mode
	EDM-	7	Caution \because This output signal is not a safety output.	

Logical relationship between safety input signal and EDM output signal

When both safety input 1 and 2 are off, i.e. when STO function of 2 safety input channels are active, the photocoupler in EDM output circuit turns on.

Signal	Symbol	Photocoupler logic			
Safety input	SF1	ON	ON	OFF	OFF
	SF2	ON	OFF	ON	OFF
EDM output	EDM	OFF	OFF	OFF	ON

By monitoring the logics (all 4 states) of photocoupler shown in the table above, the external device can determine the status (normal or abnormal) of safety input circuit and EDM output circuit.

Note \ldots Maximum delay time from input of safety 1 and 2 signals to output of EDM signal is 6 ms .

1. Safety function
 Timing Chart

Operating timing for safety status

*1 t1 is the value set to Pr4.38 Setup of mechanical brake action at running or the time at which the motor revolution speed drops below the time set to Pr4.39 Brake release speed setup, whichever comes first.
*2 Dynamic brake operates to the setting of Pr5.10 Sequence at alarm.
*3 When safety input 1 or 2 turns off, the state changes to STO condition.

Return timing from safety state

Servo-ON input (SEV-ON) *	input coupler OFF (Servo-OFF command)		input coupler ON(Servo-ON command)
Safety input 1 ON			Once the servo on command is
Safety input 2	input coupler OFF	input coupler ON	
Motor energization	not-energized		
	$\begin{array}{llll} & \\ \text { output coupler ON } & & \text { output coupler OFF }\end{array}$		
EDM output			
Dynamic brake	released/engaged *2	released/engaged *3	operation proceeds in
Servo-Ready output (S-RDY)	generated alarm output coupler OFF (not ready)	Servo-OFF	synchronous with normal servo on/off timing. (Refer to P.2-61 "Timing Chart")
		output coupler ON (ready)	
Servo-Clear intput$(\mathrm{ALM}){ }^{* 1}$	input coupler OFF		
		input coupler ON	
Servo-Alarm output	output coupler OFF (Alarm)	output coupler ON (not Alarm)	
External brake	output coupler OFF (Break engage)		

*1 Photocouplers for safety input 1 and 2 should be turned on again with servo-on input turned off. Otherwise, alarm occurs, and should be cleared.
Alarm clear should be performed after the safety input 1 and 2 have been turned back to on.
Otherwise, alarm occurs.
*2 This is an alarm condition and the dynamic brake operates according to Pr5.10 Sequence at alarm.
*3 This is normal servo-off condition and the dynamic brake operates according to Pr5. 06 Sequence at servo-off.

1. Safety function

Example of connection

Example of connection to safety switch

Example of connection to safety sensor

Example of connection to safety controller

Note

- Only for position control type is not provided with X3 (Safety function connector).

Example of connection when using multiple axes

2. Absolute system

Supplement

Outline of Absolute System

When you compose an absolute system using an absolute encoder, you are not required to carry out homing operation at the power-on, and this function suits very well to such an application as a robot.

Connect the host controller with the MINAS-A5 with absolute specifications. (motor with absolute encoder and driver with absolute spec) and set up the parameter, $\operatorname{Pr0.15}$ to 0 or 2, then connect the battery for absolute encoder to compose an absolute system with which you can capture the exact present position information after the power-ON.

Shift the system to origin once after installing the battery and clear the multi-turn data by clearing the absolute encoder, then you can detect the absolute position without carrying out homing operation.
Via RS232 or RS485 communication, the host controller can connect up to 32 MINAS-A5 and capture the present position information as serial data to obtain the absolute position of each axis by processing. each data.

Applicable Mode

You can use all of MINAS A5 series driver in absolute specifications by setting up parameter. Use the motor which 8th place (designated for rotary encoder specifications) is " S " (7-wire type).

$\mathrm{M} * \mathrm{M} * * * * \mathrm{~S} * * * *$

8th place
Rotary encoder specifications

Absolute Specifications

There are 3 connecting methods of the host controller and MINAS-A5 driver as described below, and select a method depending on the interface of the host controller specs or number of axis to be connected. Designate a module ID to Pr5.31 of each MINAS-A5 driver when you connect multiple MINAS-A5 in communication to one host controller as shown below.

[Parameter Pr5.31]

- When you connect each MINAS-A5 to the host separately with RS232 and switch the communication individually, designate 0 to 31 to each MINAS-A5.
- When you connect one MINAS-A5 to the host with RS232 and connect each MINAS-A5 with RS485, designate 0 to the MINAS-A5 connected with the host, and designate 1 to 31 to other MINAS-A5. (Max 32 axis are connectable.)
- When you connect MINAS-A5 to the host with RS485, the host is given module ID of 0 , and designate 1 to 31 to MINAS-A5. (Max 31 axis are connectable.)

Note

[^75]
2. Absolute system

Configuration

Configuration of absolute system of scale using RS232 interface

Related page ...: P. 7-28 "Connection of Communication Line"

Configuration of absolute system of scale using RS485 interface

Related page ...: P. P-29 "Connection of Communication Line"

[^76]
First Installation of the Battery

After installing and connecting the back-up battery to the motor, execute an absolute encoder setup. Refer to P.7-16, "Setup (initialization) of Absolute Encoder ".
It is recommended to perform ON/OFF action once a day after installing the battery for refreshing the battery.
A battery error might occur due to voltage delay of the battery if you fail to carry out the battery refreshment.
Caution \cdots Use the following battery for absolute encoder.
BatteryPart No. : DVOP2990 (3.6V 2000mAh)
Battery boxPart No. : DVOP4430

Replacement of the Battery

It is necessary to replace the battery for absolute encoder when battery alarm occurs.
Replace while turning on the control power. Data stored in the encoder might be lost when you replace the battery while the control power of the driver is off.
After replacing the battery, clear the battery alarm. Refer to P.7-25, "How to Clear the Battery Alarm".

Caution...? When you execute the absolute encoder with the front panel (refer to P.2-113 of Preparation), or via communication (refer to P.7-54), all of error and multi-turn data will be cleared together with alarm, and you are required to execute "Setup (Initialization) of absolute encoder" (refer to P.7-16).

How to Replace the Battery

1) Refresh the new battery. Connector with lead wire of the battery to CN601 and leave of 5 min . Pull out the connector from CN601 5 min after.

CN601
Pull out after 5 min. connection
2) Take off the cover of the battery box.
 take off the cover.

Note

[^77]Related page ...: - P.7-118 "Battery For Absolute Encoder"
4) Close the cover of the battery box.

- Be absolutely sure to follow the precautions below since improper use of the battery can cause electrolyte to leak from the battery, giving rise to trouble where the product may become corroded, and/or the battery itself may rupture.

1) Insert the battery with its " + " and " - " electrodes oriented correctly.
2) Leaving a battery which has been used for a long period of time or a battery which is no longer usable sitting inside the product can cause electrolyte leakage and other trouble. For this reason, ensure that such a battery is replaced at an early date. (As a general guideline, it is recommended that the battery be replaced every two years.)

- The electrolyte inside the battery is highly corrosive, and if it should leak out, it will not only corrode the surrounding parts but also give rise to the danger of short-circuiting since it is electrically conductive. For this reason, ensure that the battery is replaced periodically.

3) Do not disassemble the battery or throw it into a fire.

- Do not disassemble the battery since fragments of the interior parts may fly into your eyes, which is extremely dangerous. It is also dangerous to throw a battery into a fire or apply heat to it as doing to may cause it to rupture.

4) Do not cause the battery to be short-circuited. Under no circumstances must the battery tube be peeled off.

- It is dangerous for metal items to make contact with the " + " and " - " electrodes of the battery since such objects may cause a high current to flow all at once, which will not only reduce the battery performance but also generate considerable heat, possibly leading to the rupture of the battery.

5) This battery is not rechargeable. Under no circumstances must any attempt be made to recharge it.

Life of the battery

Following example shows the life calculation of the back-up battery used in assumed robot operation.
2000 [mAh] of battery capacity is used for calculation.
Note that the following value is not a guaranteed value, but only represents a calculated value.
Caution \cdots The values below were calculated with only the current consumption factored in. The calculations do not factor in electrolyte leakage and other forms of battery deterioration. Life time may be shortened depending on ambient condition.

1) $\mathbf{2}$ cycles/day

a : Current consumption in normal mode $3.6[\mu \mathrm{~A}]$
b : Current consumption at power failure timer mode 180[$\mu \mathrm{A}$]

* Power failure timer mode...Action mode in time period when the motor can respond to max. speed even the power is off (5 sec).
c : Current consumption at power failure mode $60[\mu \mathrm{~A}]$
Annual consumption capacity $=$ $(10 \mathrm{~h} \times \mathrm{a}+0.0014 \mathrm{~h} \times \mathrm{b}+2 \mathrm{~h} \times \mathrm{c}) \times 2 \times 313$ days $+24 \mathrm{~h} \times \mathrm{c} \times 52$ days $=$ 172.7[mAh])

Battery life $=2000[\mathrm{mAh}] / 172.7[\mathrm{mAh} / \mathrm{year}]=11.6$ (11.581) [year]

2) 1 cycle/day

(2nd cycle of the above 1) is for rest.

```
Annual consumption capacity =
(10h }\times\textrm{a}+0.0014\textrm{h}\times\textrm{b}+14\textrm{h}\times\textrm{c})\times313\mathrm{ days + 24h }\times\textrm{c}\times52\mathrm{ days =
349.1[mAh] )
Battery life = 2000[mAh]/349.1[mAh/year] = 5.7 (5.728) [year]
```


When you make your own cable for 17-bit absolute encoder

When you make your own cable for 17-bit absolute encoder, connect the optional battery for absolute encoder, DVOP2990 as per the wiring diagram below. Connector of the battery for absolute encoder shall be provided by customer as well.

Caution $\cdots \%$ Install and fix the battery securely. If the installation and fixing of the battery is not appropriate, it may cause the wire breakdown or damage of the battery.
Refer to the instruction manual of the battery for handling the battery.

- Installation Place

1) Indoors, where the products are not subjected to rain or direct sun beam.
2) Where the products are not subjected to corrosive atmospheres such as hydrogen sulfide, sulfurous acid, chlorine, ammonia, chloric gas, sulfuric gas, acid, alkaline and salt and so on, and are free from splash of inflammable gas, grinding oil, oil mist, iron powder or chips and etc.
3) Well-ventilated and humid and dust-free place.
4) Vibration-free place

- Wiring Diagram

Absolute multi-turn data will be maintained by the absolute encoder battery.
When operating the machine for the first time after installing the battery to the absolute encoder, clear the encoder data (multi-turn data) to 0 at the origin by following the procedure described below.
Clear the absolute encoder from the front panel (see P.2-113) or PANATERM. Turn off power and then on again.

2. Absolute system

Supplement Transferring absolute data

Transfer the absolute data (absolute data of external scale) from the servo driver to the host controller: turn on power and wait until the servo ready output (S-RDY) is turned on, and then start transfer.

Setup of serial communication interface on host controller

- RS232

Baud rate	$2400,4800,9600,19200,38400,57600,115200 \mathrm{bps}$
Data	8 bit
Parity	none
Start bit	1 bit
Stop bit	1 bit

The baud rate is set according to Pr5.29 Baud rate setup of RS232 communication.

- RS485

Baud rate	$2400,4800,9600,19200,38400,57600,115200 \mathrm{bps}$
Data	8 bit
Parity	none
Start bit	1 bit
Stop bit	1 bit

The baud rate is set according to Pr5.30 Baud rate setup of RS485 communication.

[^78]Related page $\cdots \div$

RS232 Communication Protocol

Refer to the instruction manual of the host for the transmission/reception method of command.

Data of *1 and *2 are determined by the setup of Pr5.31 "Axis address".

Axis address (example)	Data of *1	Data of *2
0	00h	2Eh
1	01h	2Dh
2	02h	2Ch
3	03h	2Bh
4	04h	2Ah
5	05h	29h
6	06h	28h
7	07h	27h
8	08h	26h
9	09h	25h
10	0Ah	24h
11	OBh	23h
12	0Ch	22h
13	ODh	21h
14	0Eh	20h
15	OFh	1Fh
16	10h	1Eh
17	11h	1Dh
18	12h	1Ch
19	13h	1Bh
20	14h	1Ah
21	15h	19h
22	16h	18h
23	17h	17h
24	18h	16h
25	19h	15h
26	1Ah	14h
27	1Bh	13h
28	1Ch	12h
29	1Dh	11h
30	1Eh	10h
31	1Fh	0Fh

Check sum becomes OK'ed when the lower
8 -bit of the sum of the received absolute data (15 characters) is 0 .
Enter the Pr5.31 value of the driver to which you want to communicate from the host to axis (*1 data) of the command block, and transmit the command according to the RS232 communication protocol. For details of communication, refer to P.7-27, "Communication".

Caution \cdots •Allow 50ms or longer interval for axis switching when you want to capture multiple axes data.

- It is recommended for you to repeat the above communication more than 2 times to confirm the absolute data coincide, in order to avoid mis-operation due to unexpected noise.

RS485 Communication Protocol

Host requests for absolute data to driver

Host receives absolute data from driver

Refer to the instruction manual of the host for the transmission/reception method of command. Following shows the communication example of the driver to Pr5.31 "Axis address $=1$ ".

Data of *1, *2 and *3 are determined by the setup of Pr5.31 "Axis address".

Axis address (example)	Data of *1	Data of *2	Data of *3
0	not usable with RS485 communication		
1	81h	01h	2Dh
2	82h	02h	2Ch
3	83h	03h	2Bh
4	84h	04h	2Ah
5	85h	05h	29h
6	86h	06h	28h
7	87h	07h	27h
8	88h	08h	26h
9	89h	09h	25h
10	8Ah	OAh	24h
11	8Bh	OBh	23h
12	8Ch	OCh	22h
13	8Dh	0Dh	21h
14	8Eh	0Eh	20h
15	8Fh	OFh	1Fh
16	90h	10h	1Eh
17	91h	11h	1Dh
18	92h	12h	1Ch
19	93h	13h	1Bh
20	94h	14h	1Ah
21	95h	15h	19h
22	96h	16h	18h
23	97h	17h	17h
24	98h	18h	16h
25	99h	19h	15h
26	9Ah	1Ah	14h
27	9Bh	1Bh	13h
28	9Ch	1Ch	12h
29	9Dh	1Dh	11h
30	9Eh	1Eh	10h
31	9Fh	1Fh	OFh

Check sum becomes OK'ed when the lower 8-bit of the sum of the received absolute data (15 characters) is 0 .

Command from the host will be transmitted to the desired driver based on RS485 transmission protocol. For details of communication, refer to P.7-27, "Communication".

Caution...s:

- Allow 50ms or longer interval for axis switching when you want to capture multiple axes data.
- It is recommended for you to repeat the above communication more than 2 times to confirm the absolute data coincide, in order to avoid mis-operation due to unexpected noise.

Composition of Absolute Data

Absolute data consists of singe-turn data which shows the absolute position per one revolution and multi-turn data which counts the number of revolution of the motor after clearing the encoder.

Single-turn data and multi-turn data are composed by using 15-character data (hexadecimal binary code) which are received via RS232 or RS485.

- Details of multi-turn data

Single-turn data \leftarrow Single-turn data $(\mathrm{H}) \times 10000 \mathrm{~h}+$ Single-turn data $(\mathrm{M}) \times 100 \mathrm{~h}+$ Single-turn data (L) multi-turn data $\leftarrow \underline{\text { multi-turn data }(\mathrm{H}) \times 100 h+\text { multi-turn data }(\mathrm{L})}$

Remarks \cdots : If the multi-turn data of the above fig. is between 32768 to 65535 , convert it to signed date after deducting 65536.

Note

- Only for position control type is not provided with X2 (Communication connector).
- Only for position control type does not support the 17-bit absolute specification. It supports only 20-bit incremental specification.
- Encoder status (L)-----1 represents error occurrence.

Encoder status (L)							
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
			0				
(1)	$\begin{gathered} \text { I } \\ \text { (2) } \end{gathered}$	(3)		(4)	(5)	(6)	$\begin{gathered} \text { I } \\ \text { (7) } \end{gathered}$

(1) Over-speed \rightarrow Err42.0 (Absolute over-speed error protection)
(2) Full absolute status \rightarrow Err47.0 (Absolute status error protection)
(3) Counter error \rightarrow Err44.0 (Absolute single-turn counter error protection)
(4) Counter overflow \rightarrow Err41.0 (Absolute counter over error protection)
(5) Multi-turn error \rightarrow Err45.0 (Absolute multi-turn counter error protection)
(6) Battery error \rightarrow Err40.0 (Absolute system down error protection)
(7) Battery alarm \rightarrow Alarm No.A2 "Battery alarm"

- Encoder status (L)-----1 represents error occurrence.

Encoder status (H)							
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	0			0	0	0	0

Remarks...: For detail of the Encoder status, refer to the Encoder specification.

Remarks $\cdots \%$ - Transmit the absolute data while fixing the motor with brake by turning to Servo-Off.

Note \cdots - Only for position control type is not provided with X2 (Communication connector).

- Only for position control type does not support the 17-bit absolute specification. It supports only 20 -bit incremental specification.
Related page $\cdots \cdots$
- P.6-4 "Protective Function" • P.7-25 "Display of Battery Alarm"

2. Absolute system

Transferring external scale absolute data

External scale RS232 communication procedure

Refer to the instruction manual of the host for the transmission/reception method of command. Following shows the communication example of the driver to Pr5.31 "Axis address $=1^{\prime \prime}$.

Host requests for absolute data to driver

Host receives absolute data from driver

Data of *1 and *2 are determined by the setup of Pr5.31 "Axis address".

Axis address (example)	Data of *1	Data of *2
0	00h	3Eh
1	01h	3Dh
2	02h	3Ch
3	03h	3Bh
4	04h	3Ah
5	05h	39h
6	06h	38h
7	07h	37h
8	08h	36h
9	09h	35h
10	0Ah	34h
11	OBh	33h
12	0Ch	32h
13	0Dh	31h
14	0Eh	30h
15	OFh	2Fh
16	10h	2Eh
17	11h	2Dh
18	12h	2Ch
19	13h	2Bh
20	14h	2Ah
21	15h	29h
22	16h	28h
23	17h	27h
24	18h	26h
25	19h	25h
26	1Ah	24h
27	1Bh	23h
28	1Ch	22h
29	1Dh	21h
30	1Eh	20h
31	1Fh	1Fh

Check sum becomes OK'ed when the lower 8 -bit of the sum of the received absolute data (15 characters) is 0 .
Enter the Pr5.31 value of the driver to which you want to communicate from the host to axis (*1 data) of the command block, and transmit the command according to the RS232 communication protocol. For details of communication, refer to P.7-27, "Communication".

Caution …

- Allow 50ms or longer interval for axis switching when you want to capture multiple axes data.
- It is recommended for you to repeat the above communication more than 2 times to confirm the absolute data coincide, in order to avoid mis-operation due to unexpected noise.

Note ... Only for position control type is not provided with X2 (Communication connector) and X5 (Connector for External Scale).

- Only for position control type does not support the 17-bit absolute specification. It supports only 20 -bit incremental specification.

External scale RS485 communication procedure

Host requests for absolute data to driver

Host receives absolute data from driver

Refer to the instruction manual of the host for the transmission/reception method of command. Following shows the communication example of the driver to $\operatorname{Pr} 5.31$ "Axis address $=1$ ".

Command from the host will be transmitted to the desired driver based on RS485 transmission protocol. For details of communication, refer to P.7-27, "Communication".

Caution…

- Allow 50ms or longer interval for axis switching when you want to capture multiple axes data.
- It is recommended for you to repeat the above communication more than 2 times to confirm the absolute data coincide, in order to avoid mis-operation due to unexpected noise.

[^79]
Composition of external scale absolute data

Using 15-character data received through RS232/RS485, organize 1-turn data and multiturn data.

External scale absolute data
\leftarrow Absolute data (6) $\times 10000000000 \mathrm{~h}$
+Absolute data (5) $\times 100000000 \mathrm{~h}$

+ Absolute data (4) $\times 1000000 \mathrm{~h}$
+ Absolute data (3) $\times 10000 \mathrm{~h}$
+ Absolute data (2) $\times 100 \mathrm{~h}$
+Absolute data (1)
Absolute data of external scale is represented as 48 bit number (negative value is represented as two's complement).

Remarks \cdots ? If the multi-turn data of the above fig. is between 32768 to 65535 , convert it to signed date after deducting 65536.

- Only for position control type does not support the 17-bit absolute specification. It supports only 20 -bit incremental specification.
- External scale status (L)-----1 represents error occurrence.

External scale status (L)								
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
			0					
	।	।	।	।	।	।	।	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	

(1) Alarm No. A8 "External scale error alarm"
(2) Alarm No. A8 "External scale error alarm"
(3) Err51.5 "External scale status 5 error protection"
(4) Err51.4 "External scale status 4 error protection"
(5) Err51.3 "External scale status 3 error protection"
(6) Err51.2 "External scale status 2 error protection"
(7) Err51.1 "External scale status 1 error protection"
(8) Err51.0 "External scale status 0 error protection"

- External scale status (H)-----1 represents error occurrence.

External scale status (H)							
bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	0			0	0	0	0

- Logical sum of bit6 and bit 7 of external scale status (L)

Logical sum of bit0 to bit 5 of external scale status (L)

Remarks $\cdots:$ For detail of the external scale status, refer to the external scale specification.

Remarks \cdots - Transmit the External scale absolute data while fixing the motor with brake by turning to Servo-Off.

- Only for position control type does not support the 17-bit absolute specification. It supports only 20-bit incremental specification.
Related page $\cdots:$
- P.6-4 "Protective Function" • Next page "Display of Battery Alarm"

2. Absolute system Display of Battery Alarm

Following alarm will be displayed when making the front panel to alarm execution mode of monitor mode.

- Press \uparrow to scroll alarm conditions.

- Kinds of alarm

alarm No.	Alarm	Content	Latched time *1
A0	Overload protection	Load factor is 85\% or more the protection level.	1 to 10 s or ∞
A1	Over-regeneration alarm	Regenerative load factor is 85% or more the protection level.	10 s or ∞
A2	Battery alarm	Battery voltage is 3.2 V or lower.	Fixed at ∞
A3	Fan alarm	Fan has stopped for 1 sec.	1 to 10 s or ∞
A4	Encoder communication alarm	The number of successive encoder communication errors exceeds the specified value.	1 to 10 s or ∞
A5	Encoder overheat alarm	The encoder detects overheat alarm.	1 to 10 s or ∞
A6	Oscillation detection alarm	Oscillation or vibration is detected.	1 to 10 s or ∞
A7	Lifetime detection alarm	The life expectancy of capacity or fan becomes shorter than the specified time.	Fixed at ∞
A8	External scale error alarm	The external scale detects the alarm.	1 to 10 s or ∞
A9	External scale communication alarm	The number of successive external scale communication errors exceeds the specified value.	1 to 10 s or ∞

*1 Alarms can be cleared by using the alarm clear. Because the all existing alarms are kept cleared while the alarm clear input (A-CLR) is kept ON, be sure to turn it OFF during normal operation. Either 1-10s orm can be selected by using user parameter.
Exception: Battery alarm is fixed at ∞ because it is latched by the encoder.
Because the end of life alarm means that the life expectancy cannot be extended, the alarm is set at ∞.

How to Clear the Battery Alarm

Replace the battery for absolute encoder when battery alarm occurs according to P.7-12, "How to Replace the Battery". After replacement, clear the battery alarm in the following 3 methods.
(a) "Connector X4" Connecting Alarm clear input (A-CLR) to COM- for more than 120 ms .
(b) Executing the alarm clear function in auxiliary function mode by using the front panel.
(c) Click the "Battery warning" Clear button, after select the "Absolute encoder" tab in the monitor display window by using the PANATERM (option).

[^80]
3.Outline of Setup Support Software, "PANATERM"
 Setup on the PC

Connector X1 of MINAS A5 can be connected to your PC through USB cable for computer. Once you download the setup support software PANATERM from our web site and install it to your PC, the following tasks can be easily performed.

Outline of PANATERM

With the PANATERM, you can execute the followings.
(1) Setup and storage of parameters, and writing to the memory (EEPROM).
(2) Monitoring of I/O and pulse input and load factor.
(3) Display of the present alarm and reference of the error history.
(4) Data measurement of the wave-form graphic and bringing of the stored data.
(5) Normal auto-gain tuning
(6) Frequency characteristic measurement of the machine system.

Note ... Distribution media such as CD-ROM for this software are not prepared.
Download the software from our web site and install it to your PC.

How to Connect

Connect to connector X 1 . (USB mini-B)

- USB cable

The connection cable should be provided with USB mini-B connector at the driver side and the PC compatible connector on the other end.
If the cable has no noise filter, install a signal noise filter (DVOP1460) to both ends of the cable.

System required for PANATERM

To use PANATERM, the following system components are required.

- PC

OS	Windows $^{\oplus}$ XP SP3 (32-bit Ver.) Windows $^{\circledR}$ VISTA SP1 (32-bit Ver.) Windows $^{\circledR} 7$ (32-bit Ver., 64-bit Ver.) (Japanese, English, Chinese or Korean version)
CPU	Pentium III 512 MHz or better
Memory	256 MB or more (512 MB recommended)
Hard disk	512 MB or more free space
Serial communication	USB port

- Display

Resolution	1024×768 pixel or more
No. of colors	24 -bit color (True Color) or better

* Please confirm the latest system requirements on the homepage.

You can connect up to 32 MINAS-A5 series with your computer or NC via serial communication based on RS232 and RS484, and can execute the following functions.
(1) Change over of the parameters
(2) Referring and clearing of alarm data status and history
(3) Monitoring of control conditions such as status and I/O.
(4) Referring of the absolute data
(5) Saving and loading of the parameter data

- Merits

- You can write parameters from the host to the driver in batch when you start up the machine.
- You can display the running condition of machine to improve serviceability.
- You can compose multi-axis absolute system with simple wiring.

4. Communication

Specifications

Connection of Communication Line

MINAS-A5 series provide 2 types of communications ports of RS232 and RS485, and support the following 3 types of connection with the host.

- RS232 communication

Connect the host and the driver in one to one with RS232, and communicate according to RS232 transmission protocol.

- Set up the module ID of MINAS-A5. In the above case, you can set any value of 0 to 31. You can set the same module ID as long as the host has no difficulty in control.
- RS232 and RS485 communication

When you connect one host to multiple MINAS-A5s, connect the host to connector X2 of one driver with RS232 communication, and connect each MINAS-A5 with RS485 communication. Set up the Pr5.31 of the driver to 0 which is connected to the host, and set up 1 to 31 to other drivers each.

- Only for position control type does not support the 17-bit absolute specification. It supports only 20 -bit incremental specification.
- RS485 communication

Connect the host to multiple MINAS-A5s with RS485 communication, set up the Pr5.31 of each front panel of MINAS-A5 to 1 to 31 .

Allow 50ms or longer interval for switching the axes while capturing data of multiple axes.

- Only for position control type is not provided with X2 (Communication connector) and X5 (Connector for External Scale).
- Only for position control type does not support the 17-bit absolute specification. It supports only 20 -bit incremental specification.

Interface of Communication Connector

- Connection to the host with RS232

- Connection to the host with RS485

Communication Method

	RS232	RS485
	Full duplex, asynchronous	Half duplex, asynchronous
Communication baud rate	$2400,4800,9600,19200,38400,57600,115200 \mathrm{bps}$	$2400,4800,9600,19200,38400,57600,115200 \mathrm{bps}$
Data	8 bit	8 bit
Parity	none	none
Start bit	1 bit	1 bit
Stop bit	1 bit	1 bit

- Set up the RS232 communication baud rate with Pr5.29, and RS485 communication baud rate with Pr5.30. The change of these parameters will be validated after the control power entry. For details, refer to the following list of parameters related to communication.

Note . Only for position control type is not provided with X2 (Communication connector) and X5 (Connector for External Scale).

- Only for position control type does not support the 17-bit absolute specification. It supports only 20-bit incremental specification.

List of User Parameters for Communication

Class	No.	Title	Setup value	Function
5	31	Axis address	0 to 127	Set the axis number for serial communication to 0 to 31. This parameter setup value has no effect on servo operation.
5	29	Baud rate setup of RS232 communication	0 to 6	Set up the communication speed of RS232 communication. $0: 2400[\mathrm{bpps}], 1: 4800[\mathrm{bps}], 2: 9600[\mathrm{bps}], 3: 19200[\mathrm{bps}]$, $4: 3800[\mathrm{bps}], 5: 57600[\mathrm{bps}], 6: 115200[\mathrm{bps}]$ Updated setup of is validated upon turning on of control power.
5	30	Baud rate setup of RS485 communication	0 to 6	Set up the communication speed of RS485 communication. $0: 2400[\mathrm{bpps}], 1: 4800[\mathrm{bps}], 2: 9600[\mathrm{bps}], 3: 19200[\mathrm{bps}]$, $4: 38400[\mathrm{bps}], 5: 57600[\mathrm{bps}], 6: 115200[\mathrm{bps}]$ Updated setup of is validated upon turning on of control power.

- Required time for data transmission per 1 byte is calculated in the following formula in case of 9600[bps].

$$
\begin{gathered}
1000 / 9600 \times(1+\underset{\text { Data }}{ }+\underset{\text { Start bit }}{+8}+\underset{\text { Stop bit }}{1})=1.04[\mathrm{~ms} / \text { byte }]
\end{gathered}
$$

Note that the time for processing the received command and time for switching the line and transmission/reception control will added to the actual communication time.

- Handshake code

Following codes are used for line control.

Title	Code	Function
ENQ	05h (Module recognition byte of the transmitted)	Enquire for transmission
EOT	04h (Module recognition byte of the transmitted)	Ready for receiving
ACK	06h	Acknowledgement
NAK	15 h	Negative acknowledgement

ENQ..... The module (host or driver) sends out ENQ when it has a block to send.
EOT The module (host or driver) sends out EOT when it is ready to receive a block. The line enters to a transmission mode when ENQ is transmitted and EOT is received.
ACK When the received block is judged normal, the module (host or driver) will send out ACK.
NAK When the received block is judged abnormal, NAK will be sent. A judgment is based on checksum and timeout.

Caution \cdots :
1 byte of module recognition is added to ENQ and EOT at RS485 communication.
Module recognition byte... Make the Pr5.31 value of the front panel as a module ID, and data which makes its bit7 as 1 , becomes a module recognition byte.

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
1	0	0	0	Module ID			

Module ID : The module ID of the host side will be 0 in case of RS485 communication, therefore set up Pr5.31 of MINAS-A5 to 1 to 31.

Note ... Only for position control type is not provided with X2 (Communication connector) and X5 (Connector for External Scale).

- Only for position control type does not support the 17-bit absolute specification. It supports only 20 -bit incremental specification.

Transmission Sequence

- Transmission protocol

- In case of RS232

- In case of RS485

- Line control

Decides the direction of transmission and solves the contention.
Reception mode... From when the module (host or driver) returns EOT after receiving ENQ. Transmission mode... From when the module (host or driver) receives EOT after transmitting ENQ.
At contention of transmission and reception... Slave side will enter to reception mode when it receives ENQ while waiting for EOT after transmitting ENQ, by giving priority to ENQ (of master side).

- Transmission control

On entering to transmission mode, the module transmits the command block continuously and then waits for ACK reception. Transmission completes at reception of ACK.. ACK may not be returned at transmission failure of command byte counts. If no ACK is received within T2 period, or other code than NAK or ACK is received, sequence will be retried. Retry will start from ENQ.

- Reception control

On entering to reception mode, the module receives the transmitted block continuously. It will receive the command byte counts from the first byte, and continuously receive extra 3 bytes. It will return ACK when the received data sum becomes 0 , by taking this status as normal. In case of a check sum error or a timeout between characters, it will return NAK.

[^81]
- Data Block Composition

Below shows the composition of data block which is transmitted in physical phase.

$\mathrm{N} \quad:$ Command byte counts (0 to 240) Shows the number of parameters which are required by command.
axis : Sets up the value of Pr5.31.(0 to 127)
command : Control command (0 to 15)
mode : Command execution mode (0 to 15) Contents vary depending on the mode.
check sum : 2's complement of the total number of bytes, ranging from the top to the end of the block

- Protocol Parameter

Following parameters are used to control the block transmission. You can set any value with the INIT command (described later).

Title	Function		Initial value	Setup range	Unit
T1	Time out between characters	RS232	5 (0.5 sec)	1 to 255	0.1 sec
		RS485	$1(0.1 \mathrm{sec})$		
T2	Protocol time out	RS232	5 (0.5 sec)	1 to 255	1 sec
		RS485	1 (0.1 sec)		
T6	Driver response time	RS232	0 (0ms)	0 to 255	1 ms
		RS485	6 (6ms)	2 to 255	
RTY	Retry limit		1 (once)	1-8	Once
M/S	Master/Slave		0 (Slave)	0, 1 (Master)	

T1: - Permissible time interval for this driver to receive the consecutive character cods which exists between the module recognition bytes and ENQ/EOT, or in the transmission/reception data block. Time out error occurs and the driver returns NAK to the transmitter when the actual reception time has exceed ed this setup time.
T2: - Permissible time interval for the driver to transmit ENQ and to receive EOT. If the actual reception time exceeds this setup, this represents that the receiver is not ready to receive, or it has failed to receive ENQ code in some reason, and the driver will re-transmit ENQ code to the receiver. (retry times)

- Permissible time interval for the driver to transmit EOT and to receive the reception of the 1st character code. The driver will return NAK and finishes the reception mode if the actual reception has exceeded this setup time.
- Permissible time interval for the module to transmit the check sum bytes and to receive ACK. The module will re-transmit ENQ code to the receiver in the same way as the NAK reception, if the actual reception time exceeds this setup time.
T6: - Permissible time interval for the driver to receive ENQ and to transmit EOT; Permissible time interval for the driver to receive the check sum bytes and to transmit ACK; and Permissible time interval for the driver to receive EOT and to transmit the 1st character.
RTY: Maximum value of retry times. Transmission error occurs if the actual retry has exceeds this setup value.
M/S: Switching of master and slave. When contention of ENQ has occurred, the module decides which is to be given priority.
Priority is given to the transmitter which is set up as a master. (0: Slave mode, 1 : Master mode)
Note . Only for position control type is not provided with X2 (Communication connector) and X5 (Connector for External Scale).
- Only for position control type does not support the 17-bit absolute specification. It supports only 20-bit incremental specification.

Example of Data Communication

- e.g. Reference of Absolute Data

When you connect the host to one driver with RS232 communication, and connect multiple MINAS-A5s with RS485 communication. Following flow chart describes the actual flow of the communication data when you want to capture the absolute data of the module ID=1.
e.g. of system composition

e.g. of capturing the absolute data

Following shows the communication data in time series when you want to capture the absolute data. Data is presented in hexadecimals.

Caution ‥? See the below for the captured data. Refer to P.7-48, "Read out of Absolute Encoder " of details of communication command, for the data composition.

Multi-turn data : 0000h=0
Single turn data : 01FFD8h = 131032
Allow 50 ms or longer interval for switching the axis while capturing data of multiple axes.
Note . Only for position control type is not provided with X2 (Communication connector) and X5 (Connector for External Scale).

- Only for position control type does not support the 17-bit absolute specification. It supports only 20-bit incremental specification.

- Example of Parameter Change

Following shows the communication data in time series when you change parameters. Communication in general will be carried out in sequence of (1) Request for capturing of execution right, (2) Writing of individual parameter, and (3) Writing to EEPROM when saving of data is required, and (4) Release of execution right. Here the hardware connection shows the case that the driver (user ID=1) is directly connected to the host with RS232. Date is presented in hexadecimals.

Caution …s. For details of command, refer to P.7-40, "Details of Communication Command".

Note . Only for position control type is not provided with X2 (Communication connector) and X5 (Connector for External Scale).

- Only for position control type does not support the 17-bit absolute specification. It supports only 20 -bit incremental specification.

Status Transition Chart

- RS232 Communication

Idling = It waits for the reception of ENQ, and or it is dealing with reception.

Note

- Only for position control type is not provided with X2 (Communication connector) and X5 (Connector for External Scale).
- Only for position control type does not support the 17-bit absolute specification. It supports only 20 -bit incremental specification.
- RS485 Communication

Note ... Only for position control type is not provided with X2 (Communication connector) and X5 (Connector for External Scale).

- Only for position control type does not support the 17-bit absolute specification. It supports only 20-bit incremental specification.

Timing of Data Communication

- In case of RS485 (RS232 to follow)

Symbol	Title	Minimum	Maximum
T3	Continuous inter-character time	Stop bit length	Protocol parameter T1
T4	Response time of driver	Protocol parameter T6	Protocol parameter T2
T5	Response time of host	2 ms	Protocol parameter T2

Caution \cdots Above time represents a period from the rising edge of the stop bit.

Note . Only for position control type is not provided with X2 (Communication connector) and X5 (Connector for External Scale).

- Only for position control type does not support the 17-bit absolute specification.

It supports only 20-bit incremental specification.

command	mode	Content
0		NOP
	1	Read out of CPU version
	5	Read out of driver model
	6	Read out of motor model
1		INIT
	7	Capture and release of execution right
	8	Setup of RS232 protocol parameter
	9	Setup of RS485 protocol parameter
2		POS, STATUS, I/O
	0	Read out of status
	1	Read out of command pulse counter
	2	Read out of feedback pulse counter
	4	Read out of present speed
	5	Read out of present torque output
	6	Read out of present deviation counter
	7	Read out of input signal
	8	Read out of output signal
	9	Read out of present speed, torque and deviation counter
	A	Read out of status, input signal and output signal
	C	Read out of external scale
	D	Read out of absolute encoder
	E	Read out of external scale deviation and sum of pulses
7		PARAMETER
	0	Individual read out of parameter
	1	Individual writing of parameter
	2	Writing of parameter to EEPROM
	6	Individual read out of user parameter
	7	Read out of two or more user parameter
	8	Writing of two or more user parameter
9		ALARM
	0	Read out of present alarm data
	2	Batch read out of alarm history
	3	Clear of user alarm history
	4	Alarm clear
	B	Absolute clear

- Use the above commands only. If you use other commands, action of the driver cannot be guaranteed.
- When the reception data counts are not correct in the above command, transmission byte1 (Error code only) will be returned regardless of communication command.

- Version information will be returned in upper data and lower data.
(Decimal point will be returned by making the lower 4 bit of the upper dataas 0 .)
- Version will be displayed in figures from 0 to 9. (e.g. Version 3.1 will be upper data 30h, lower data 13h.)

- Driver model consist of 12-characters, and will be transmitted in ASCII code.
(e.g.) "MADHT1105***"

- Capture the execution right to prevent the conflict of the operation via communication and that with the front panel.
- Enquires for the capture of the execution right at parameter writing and EEPROM writing, and release the execution right after the action finishes.
- mode $=1$: Enquires for the capture of the execution right mode $=0$: Enquires for the release of the execution right
- You cannot operate with the front panel at other than monitor mode while the execution right is captured via communication.
- When the module fails to capture the execution right, it will transmit the error code of in use.

$\frac{\text { command }}{1}$	mode	- Setup of RS232 protocol parameter					
		Reception data			Transmission data		
		4			1		
		axis			axis		
		8					1
			T1			Erro	
			T2			che	
			T6				
		0					
		checksum					
Error code							
bit7	6	5	4	3	2	1	0
0 : Normal 1 : Error		T6error	RS485 error	RTYerror	T2error	T1error	

- Until this command completes, previous set up protocol parameter will be processed.

After this command has been executed, this parameter setup will be valid from the next command.

- RTY is 4-bit.
- Unit... T1: 0.1s, T2 : 0.1s, T6 : 1ms

$\frac{\text { command }}{1}$	$\begin{gathered} \text { mode } \\ \hline 9 \end{gathered}$	- Setup of RS485 protocol parameter					
		Reception data			Transmission data		
		4			1		
		axis			axis		
		9	1		9		
		T1			Error code		
		T2			checksum		
		T6					
		0					
		checksum					
Error code							
bit7	6	5	4	3	2	1	0
0 : Normal 1 : Error		T6error	RS485 error	RTYerror	T2error	T1error	

[^82]

- Control modes are defined as follows.

0	Position control mode
1	Velocity control mode
2	Torque control mode
3	Full-closed control mode

- positive direction/negative direction running : This becomes 1 when motor speed (after converted to $\mathrm{r} / \mathrm{min}$) is positive (positive direction) or negative (negative direction).
- Slower than DB permission : This becomes 1 when motor speed (after converted to $\mathrm{r} / \mathrm{min}$) is below $30 \mathrm{r} / \mathrm{min}$.
-Torque in-limit: This becomes 1 when torque command is limited by analog input or parameter

- Module returns the present position of feedback pulse counter in absolute coordinates from the staring point.
- Counter value will be "-" for negative direction and "+" for positive direction.
- Feedback pulse counter is the total pulse counts of the encoder and represents the actual motor position traveled

- Reads out the present speed. (Unit : [r/min])
- Output value in 16 bit
- Speed will be " - " for negative direction and " + " for positive direction.

- Reads out the present torque output. (Unit : Converted with "Rated motor torque = 2000)
- Output value in 16 bit
- Torque command will be " - " value for negative direction and " + " value for positive direction.

- Logic of input signal is based on assignment set in the parameter.
- Because of the internal logical data after conversion of input, it does not directly correspond to the input signal from the connector X5.
- CW over-travel inhibit input and CCW over-travel inhibit input will change according to the input logic, even if they have been disabled by the parameter,

$\frac{\text { command }}{2}$	mode	- Read out of output signal					
		Reception data			Transmission data		
		0			7		
		axis			axis		
		8	1 2		8		2
		checksum			data L		
						data H	
						alarm data L	
						H	
						error code	
						checksum	
error code							
bit7	6	5	4	3	2	1	0
0 : Normal 1 : Error		Command error	RS485 error				
Data							
bit7	6	5	4	3	2	1	0
For manufacturer's use	In-speed	Torque in-limit	Zero speed detection	Mechanical brake released	$\begin{array}{\|l} \text { Positioning } \\ \text { complete } \\ \text { (In-position) } \\ \hline \end{array}$	Servo-Alarm	Servo-Ready
Excite motor	Control power latch	Dynamic brake engagement	Control inrush suppression relay	$\begin{aligned} & \text { Control } \\ & \text { regeneration } \\ & \text { brake } \\ & \hline \end{aligned}$	Full-closed positioning complete	At-speed	For manufacturer's use
bit23	22	21	20	19	18	17	16
Safety EDM	$\begin{aligned} & \text { Speed } \\ & \text { Command } \\ & \text { ON/OFF } \\ & \hline \end{aligned}$	Alarm attribute output	Speed in-limit output	$\begin{aligned} & \text { 2nd positioning } \\ & \text { complete } \\ & \text { (In-position) } \end{aligned}$	$\begin{aligned} & \text { Positional } \\ & \text { Com/mand } \\ & \text { ON/OFF } \\ & \hline \end{aligned}$	Alarm output 2	Alarm output 1
bit31	31	29	28	27	26	25	24
For manufacturer's use							
alarm data							
bit7	6	5	4	3	2	1	0
Overload protection	Fan alarm	Over-regeneration alarm	$\begin{array}{\|l\|} \hline \text { Encoder } \\ \text { communication } \\ \text { alarm } \\ \hline \end{array}$	Encoder overheat alarm	Lifetime detection alarm	For manufacturer's use	Battery alarm
bit15	14	13	12	11	10	9	8
For manufacturer's use	For manufacturer's use	For manufacturer's use			External scale communication alarm	Oscillation detection alarm	External scale error alarm

- The table below shows the relation of the signals and actions.

Signal title	0	1
Servo-Ready	Servo-Not Ready	At Servo-Ready
Servo-Alarm	Normal	At Servo-Alarm
Positioning completed	Positioning not completed	Positioning in-complete
Mechanical brake released	Mechanical brake engaged	Mechanical brake released
Zero speed detection	Zero speed not detected	Zero speed detected
Torque in-limit	Torque not in-limit	Torque in-limit
At-speed (Speed arrival)	Not at-speed(Speed not arrived)	Speed arriving
In-speed (Speed coincidence)	Not in-speed(Speed not coincided)	In-speed (Speed coincided)
Full-closed positioning complete	Full-closed positioning not completed	Full-closed positioning completed
Control regeneration brake	Turn off regeneration Tr	Turn on regeneration Tr
Control inrush suppression relay	Release inrush suppression relay	Operate inrush suppression relay
Dynamic brake engagement	Dynamic brake released	Dynamic brake engaged
Control power latch	Release power latch	Power abnormal latching
Excite motor	Energize motor	Servo free

- Because of the internal logical data before output conversion, it does not directly correspond to the output signal to the connector X5.
- Names and functions shown above are for MINAS-A5 (general-purpose model). Some of input signals will have different meaning for different series.

- Output value of speed and torque are in 16 bit and deviation in 32 bit.
- Unit and sign of the output data is as same as that of command No. 24 (command $=2$, mode $=4), 25(\operatorname{mode}=5)$ and 26 (mode = 6).

- Meaning of each bit of control mode, status, input signal, output signal and alarm data is as same as that of command No. $20($ command $=2$, mode $=0), 27($ mode $=7)$ and $28($ mode $=8)$.

- External scale FB pulse sum will return the present position of the external scale counter in absolute coordinates from the starting point.
- External scale FB pulse sum will be "-" for negative direction and "+" for positive direction.
- External scale deviation becomes " + " when the external scale is positioned at negative direction against position command, and "-" when it is positioned at positive direction.

- If the parameter type or the parameter No. is outside the range, returns No. error.
- Parameter value, MIN value and MAX value should be sign-extended to 32 bits before being transmitted.

- Set 0 to unused parameter. Otherwise data error occurs. When data outside the specified setting range is sent, data error occurs.
- If the parameter type or the parameter No. is outside the range, returns No. error.

- Clears the alarm data history.
- Data error will occur when you fail to clear.
- When under-voltage of control power supply occurs, error code of control LV will be returned instead of executing writing

- Clears the present alarm. (only those you can clear)

- Clears absolute encoder error and multi-turn data
- Command error will be returned when you use other encoder than 17bit absolute encoder.

Supplement

5. Motor Characteristics
 (Sheracteristics)

MSMD series (50W to 100W)

- Note that the motor characteristics may vary due to the existence of oil seal or brake.
- Continuous torque vs. ambient temperature characteristics have been measured with an aluminum flange attached to the motor (approx. twice as large as the motor flange).

[^83]- When you lower the torque limit setup (P0.13 and 5.22), running range at high speed might be lowered as well.

[^84]- When you lower the torque limit setup (P0.13 and 5.22), running range at high speed might be lowered as well.

[^85]
5. Motor Characteristics
 $\binom{$ S-T }{ Characteristics }

Supplement

MSME series (50W to 100W)

[^86]
＊These are subject to change．Contact us when you use these values for your machine design．
－When you lower the torque limit setup（P0．13 and 5．22）， running range at high speed might be lowered as well．

5. Motor Characteristics $\left(\begin{array}{c}\text { S.T.T } \\ \hline\end{array}\right.$
 $\binom{$ S-T }{ Characteristics }

Supplement

MSME series (400w to 750W)

* These are subject to change. Contact us when you use these values for your machine design.

Supplement

5. Motor Characteristics $\left(\begin{array}{c}\text { s-Tharacteristics })\end{array}\right.$

MSME series (1.0kW to 2.0 kW)

MSME series (1.0kW													
With oil seal													
- MSME102 * 1 * Input voltage to driver: AC200V (Dotted line represents torque at 10% less voltage.) * Continuous torque vs. ambient temp.						- MSME104 * 1 * Input voltage to driver: AC400V (Dotted line represents torque at 10% less voltage.) * Continuous torque vs. ambient temp.							
- MSME152 * 1 * Input voltage to driver: AC200V (Dotted line represents torque at 10% less voltage.) * Continuous torque vs. ambient temp.													
- MSME202 * 1 * Input voltage to driver: AC200V (Dotted line represents torque at 10% less voltage.) * Continuous torque vs. ambient temp.						- MSME204 * 1 * Input voltage to driver: AC400V (Dotted line represents torque at 10% less voltage.) * Continuous torque vs. ambient temp.							

* These are subject to change. Contact us when you use these values for your machine design.
- When you lower the torque limit setup (P0.13 and 5.22), running range at high speed might be lowered as well.

5. Motor Characteristics (chioracteristics)

Supplement

MSME series (3.0kW to 5.0 kW)

* These are subject to change. Contact us when you use these values for your machine design.
- When you lower the torque limit setup (P0.13 and 5.22), running range at high speed might be lowered as well.

- MDME044 * 1 *

Input voltage to driver: AC400V
(Dotted line represents torque at 10% less voltage.)

* Continuous torque vs. ambient temp.

ratio vs. rated torque

- MDME102 * 1 *

Input voltage to driver: AC200V
(Dotted line represents torque at 10\% less voltage.)

* Continuous torque vs. ambient temp.
 ratio vs. rated torque

- MDME152 * 1*

Input voltage to driver: AC200V
(Dotted line represents torque at 10% less voltage.)

* Continuous torque vs. ambient temp.
 ratio vs. rated torque

- MDME 202 * 1 *

Input voltage to driver: AC200V
(Dotted line represents torque at 10% less voltage.)

- MDME064 * 1 *

Input voltage to driver: AC400V
(Dotted line represents torque at 10% less voltage.)

- MDME154 * 1 *

Input voltage to driver: AC400V
(Dotted line represents torque at 10\% less voltage.)

* Continuous torque vs. ambient temp.

atio vs. rated torque

- MDME204 * 1 *

Input voltage to driver: AC400V
(Dotted line represents torque at 10\% less voltage.)

* These are subject to change. Contact us when you use these values for your machine design.

5. Motor Characteristics (s-T
 $\binom{$ S-T }{ Characteristics }

Supplement

MDME series (3.0kW to 5.0 kW)

* These are subject to change. Contact us when you use these values for your machine design.
- When you lower the torque limit setup (P0.13 and 5.22), running range at high speed might be lowered as well.

MDME series (7.5kW to 15.0kW)

- MDME752 * 1 *

Input voltage to driver: AC200V
(Dotted line represents torque at 10% less voltage.)

* Continuous torque vs. ambient temp.
 ratio vs. rated torque

- MDMEC12 * 1 *

Input voltage to driver: AC200V
(Dotted line represents torque at 10% less voltage.)

- MDMEC52 * 1 *

Input voltage to driver: AC200V

(Dotted line represents torque at 10% less voltage.)
$\begin{array}{c}\text { * Continuous torque vs. ambient temp. } \\ \text { torque } \\ {[\mathrm{N} \cdot \mathrm{m}]} \\ \text { ratio vs. rated torque } \\ \text { [\%] }\end{array}$

MDME754 * 1 *
Input voltage to driver: AC400V
(Dotted line represents torque at 10% less voltage.)

* Continuous torque vs. ambient temp.

| torque |
| :--- | :--- | :--- |
| $[\mathrm{N} \cdot \mathrm{m}]$ |
| (119) |
| 100 | vs. rated torque

[\%]

- MDMEC14 * 1 *

Input voltage to driver: AC400V
(Dotted line represents torque at 10% less voltage.)

- MDMEC54 * 1 *

Input voltage to driver: AC400V

5. Motor Characteristics (s-T
 Characteristics)

Supplement

MFME series (1.5kW to 4.5kW)

MFME series (1.5kW to 4.5 kW)													
With oil sea													
- MFME152 * 1 * Input voltage to driver: AC200V (Dotted line represents torque at 10% less voltage.) * Continuous torque vs. ambient temp.						- MFME154 * 1 * Input voltage to driver: AC400V (Dotted line represents torque at 10% less voltage.) * Continuous torque vs. ambient temp.							
- MFME252 * 1 * Input voltage to driver: AC200V (Dotted line represents torque at 10\% less voltage.)						- MFME254 * 1 * Input voltage to driver: AC400V (Dotted line represents torque at 10\% less voltage.)							
- MFME452 * 1 * Input voltage to driver: AC200V (Dotted line represents torque at 10% less voltage.) * Continuous torque vs. ambient temp.						- MFME454 * 1 * Input voltage to driver: AC400V (Dotted line represents torque at 10% less voltage.) * Continuous torque vs. ambient temp.							

* These are subject to change. Contact us when you use these values for your machine design.
- When you lower the torque limit setup (P0.13 and 5.22), running range at high speed might be lowered as well.

[^87]| MDME series (4.5kW to 6.0kW) | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| With oil sea | | | | | | | | | | | | |
| - MGME452 * 1 *
 Input voltage to driver: AC200V
 (Dotted line represents torque at 10\% less voltage.)
 * Continuous torque vs. ambient temp. | | | | | - MGME454 * 1 *
 Input voltage to driver: AC400V
 (Dotted line represents torque at 10\% less voltage.)
 * Continuous torque vs. ambient temp. | | | | | | | |
| - MGME602 * 1 *
 Input voltage to driver: AC200V (Dotted line represents torque at 10% less voltage.)
 * Continuous torque vs. ambient temp. | | | | | - MGME604 * 1 *
 Input voltage to driver: AC400V
 (Dotted line represents torque at 10% less voltage.)
 * Continuous torque vs. ambient temp. | | | | | | | |

[^88]- When you lower the torque limit setup (P0.13 and 5.22), running range at high speed might be lowered as well.

[^89]

[^90]- When you lower the torque limit setup (P0.13 and 5.22), running range at high speed might be lowered as well.

[^91]

* These are subject to change. Contact us when you use these values for your machine design.
- When you lower the torque limit setup (P0.13 and 5.22), running range at high speed might be lowered as well.

A-frame

C-frame

Rack mount type
Option:
(Front-end mounting)

Base mount type (Standard: (Standard: $\begin{aligned} & \text { Back-end mounting }\end{aligned}$

D-frame (200 V)

Base mount type (Standard: (Back-end mounting

Mass: 1.8 kg

D-frame (400 V)

E-frame (200 V)

E-frame (400 V)

\uparrow
Direction of air flowing from the internal cooling fan

Mass: 2.7 kg

F-frame (200/400 V)

Mass: 4.8kg [200V] 4.7 kg [400V]

Mass: 13.5 kg

Related page ...? •P.1-3 "Driver" • P.1-23 "Check of the Combination of the Driver and the Motor" - P.2-10 "Driver and List of Applicable Peripheral Equipments"

H-frame (200/ 400 V)

Mass: 21.0 kg

6. Dimensions

Supplement

Motor

MSMD 50W to 100W

* Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

MSMD series (Low inertia)			
Motor output		50W	100W
Motor model	MSMD	5A**1 \square	01**1*
LL	Without brake	72	92
	With brake	102	122
LR		25	
S		8	
LA		45	
LB		30	
LC		38	
LE		3	
LF		6	
LH			
LN		26.3 \| ${ }^{32}$ 46.5	
LZ		3.4	
$\begin{gathered} \text { D } \\ \text { 法少 } \end{gathered}$	LW	25	
	LK	20	
	RH	7.5	
	LW	14	
	LK	12.5	
	KW	3h9	
	KH	3	
	RH	6.2	
	TP	M3 depth 6	
Mass (kg)	Without brake	0.32	0.47
	With brake	0.53	0.68
Connector specifications		Refer to P.2-48 "Specifications of Motor connector"	

Caution \cdots Reduce the moment of inertia ratio if high speed response operation is required.

6. Dimensions

Motor

MSMD 200W to 750W

Encoder connector

Shaft end spec.
(D-cut shaft)

(Key way with center tap shaft)

* Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

Caution $\cdots<$ Reduce the moment of inertia ratio if high speed response operation is required.
Related page $\ldots . \%^{\circ} \cdot$ P.1-21 "Check of the Model" • P.1-23 "Check of the Combination of the Driver and the Motor" - P.7-56, 57 "S-T Characteristics"

MSME 50W to 750W

Shaft end spec (Key way with center tap shaft)

[With brake]
Encoder connector Brake connector

Shaft end spec.
(Key way with center tap shaft)

* Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

MSME series (Low inertia)						
Motor output		50W	100W	200W	400W	750W
Motor model	MSME	5A**1*	01**1*	02** 1*	04**1*	082 * 1 *
LL	Without brake	72	92	79.5	99	112.2
	With brake	102	122	116	135.5	148.2
	LR	25		30		35
	S	8		11	14	19
	LA	45		70		90
	LB	30		50		70
	LC	38		60		80
LE		3				
LF		-		6.5		8
LH		46.6		52.5		61.6
LM	Without brake	44.8	64.8	53	72.5	85.7
	With brake	74.8	94.8	89.5	109	121.7
LN		23	43	-	-	-
LT		27.2		26.5		
LZ		3.4		4.5		6
	LW	14		20	25	25
	LK	12.5		18	22.5	22
	KW	3h9		4h9	5h9	6h9
	KH	3		4	5	6
	RH	6.2		8.5	11	15.5
	TP	M3 depth 6		M4 depth 8	M5 depth 10	
Mass (kg)	Without brake	0.31	0.46	0.78	1.2	2.3
	With brake	0.51	0.66	1.2	1.6	3.1
Connector specifications		Refer to P.2-48 "Specifications of Motor connector"				

Caution $\cdots \therefore$ Reduce the moment of inertia ratio if high speed response operation is required.

[^92]
6. Dimensions

Motor

MSME $750 \mathrm{~W}(400 \mathrm{~V}), 1.0 \mathrm{~kW}$ to 5.0 kW (DesignOrder: 1)

<MSME 750W(400V), 1.0kW to 2.0kW>

Shaft end spec. (Key way shaft)

<MSME 3.0kW to $5.0 \mathrm{~kW}>$ * All sizes are identical to those of MSME 1.0 to 2.0 kW versions except for LF.

* Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

MSME series (Low inertia)								
Motor output		750W	1.0 kW	1.5 kW	2.0kW	3.0kW	4.0kW	5.0 kW
Motor model	MSME	084* 1*	10**1*	15**1*	20**1*	30**1*	40**1*	50**1*
LL	Without brake	131.5	141	159.5	178.5	190	208	243
	With brake	158.5	168	186.5	205.5	215	233	268
LR		55					65	
	S	19				22	24	
	LA	115				145		
	LB	95				110		
	LC	100				120	130	
	LD	135				162	165	
	LE	3					6	
	LF	10				12		
LG		60						
	LH	101				113	118	
LM	Without brake	87.5	97	115.5	134.5	146	164	199
	With brake	114.5	124	142.5	161.5	171	189	224
	LZ	9						
	LW	45					55	
	LK	42				41	51	
	KW	6h9				8h9		
	KH	6				7		
	RH	15.5				18	20	
Mass (kg)	Without brake	3.1	3.5	4.4	5.3	8.3	11.0	14.0
	With brake	4.1	4.5	5.4	6.3	9.4	12.6	16.0
Connector specifications		Refer to P.2-49 "Specifications of Motor connector"						

Caution \cdots Reduce the moment of inertia ratio if high speed response operation is required.

[^93]
6. Dimensions

Motor

MSME 1.0 kW to 5.0 kW (DesignOrder: C)
<MSME 1.0kW to 2.0kW>

<MSME 3.0kW to $5.0 \mathrm{~kW}>$ * All sizes are identical to those of MSME 1.0 to 2.0 kW versions except for LF.

* Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

MSME series (Low inertia)							
Motor output		1.0kW	1.5kW	2.0kW	3.0 kW	4.0kW	5.0kW
Motor model	MSME	10** C*	15** C*	20 * C *	30** C*	40** C*	50** C*
LL	Without brake	143	161.5	180.5	192	210	245
	With brake	170	188.5	207.5	217	235	270
LR		55				65	
	S	19			22	24	
	LA	115			145		
	LB	95			110		
	LC	100			120	130	
	LD	135			162	165	
	LE	3				6	
LF		10			12		
LG		84					
	LH	101			113	118	
LM	Without brake	97	115.5	134.5	146	164	199
	With brake	124	142.5	161.5	171	189	224
LZ		9					
	LW	45				55	
	LK	42			41	51	
	KW	6 h 9			8h9		
	KH	6			7		
	RH	15.5			18	20	
Mass (kg)	Without brake	3.5	4.4	5.3	8.3	11.0	14.0
	With brake	4.5	5.4	6.3	9.4	12.6	16.0
Connector specifications		Refer to P.2-49 "Specifications of Motor connector"					

Caution $\cdots \therefore$ Reduce the moment of inertia ratio if high speed response operation is required.
Related page $\cdots \cdot:$ •P.1-21 "Check of the Model" • P.1-23 "Check of the Combination of the Driver and the Motor"
-P.7-61, 7-62 "S-T Characteristics"

6. Dimensions

Motor

MDME 400W to 5.0kW (DesignOrder: 1)

* Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

MDME series (Middle inertia)									
Motor output		400W	600W	1.0kW	1.5 kW	2.0kW	3.0kW	4.0kW	5.0kW
Motor model	MDME	044*1*	064* 1*	10**1*	15**1*	$20 * * 1$ *	30**1*	40**1*	$50 * * 1 *$
LL	Without brake	131.5	141	138	155.5	173	208	177	196
	With brake	158.5	168	163	180.5	198	233	202	221
LR		55					65	70	
	S	19		22			24	35	
	LA	115		145				200	
	LB	95		110				114.3	
	LC	100		130				176	
	LD	135		165				233	
	LE	3		6				3.2	
	LF	10		12				18	
LG		60							
	LH	101		116			118	140	
LM	Without brake	87.5	97	94	111.5	129	164	133	152
	With brake	114.5	124	119	136.5	155	189	158	177
	LZ	9						13.5	
	LW	45					55		
	LK	42		41			51	50	
	KW	6h9		8h9				10h9	
	KH	6		7				8	
	RH	15.5		18			20	30	
Mass (kg)	Without brake	3.1	3.5	5.2	6.7	8.0	11.0	15.5	18.6
	With brake	4.1	4.5	6.7	8.2	9.5	12.6	18.7	21.8
Connector specifications		Refer to P.2-49 "Specifications of Motor connector"							

Caution $\cdots \%$ Reduce the moment of inertia ratio if high speed response operation is required.

[^94]-P.7-63, 7-64 "S-T Characteristics"

MDME 400 W to 5.0 kW (DesignOrder: C)

* Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

MDME series (Middle inertia)							
Motor output		1.0kW	1.5 kW	2.0kW	3.0kW	4.0kW	5.0kW
Motor model	MDME	10**C*	15** C*	20** C *	30** C *	40** C*	50 * C *
LL	Without brake	140	157.5	175	210	179	198
	With brake	165	182.5	200	235	204	223
LR		55			65	70	
S		22				35	
LA		145				200	
LB		110				114.3	
LC		130				176	
LD		165				233	
LE		6				3.2	
LF		12				18	
LG		84					
LH		116			118	140	
LM	Without brake	94	111.5	129	164	133	152
	With brake	119	136.5	155	189	158	177
LZ		9				13.5	
	LW	45			55		
	LK	41			51	50	
	KW	8h9				10h9	
	KH	7				8	
	RH	18			20	30	
Mass (kg)	Without brake	5.2	6.7	8.0	11.0	15.5	18.6
	With brake	6.7	8.2	9.5	12.6	18.7	21.8
Connector specifications		Refer to P.2-49 "Specifications of Motor connector"					

Caution \cdots Reduce the moment of inertia ratio if high speed response operation is required.

6. Dimensions

Motor

MDME 7.5 kW to 15.0 kW

Shaft end spec. (Key way shaft)

<MDME 11.0kW, 15.0kW>

Shaft end spec. (Key way shaft)

* Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

MDME series (Middle inertia)				
Motor output		7.5kW	11.0kW	15.0kW
Motor model	MDME	75**1*	C1**1*	C5**1*
LL	Without brake	312	316	348
	With brake	337	364	432
LR		113	116	
S		42	55	
LA		200	235	
LB		114.3	200	
LC		176	220	
LD		233	268	
LE		3.2	4	
LF		24	32	
LG		60		
LH		184	205	
LM	Without brake	268	272	340
	With brake	293	320	388
LZ		13.5		
	LW	96	98	
	LK	90	90	
	KW	12h9	16h9	
	KH	8	10	
	RH	$37-0.2$	$49-0.2$	
Mass (kg)	Without brake	36.4	52.7	70.2
	With brake	40.4	58.9	76.3
Connector specifications		Refer to P.2-49 "Specifications of Motor connector"		

Caution \cdots Reduce the moment of inertia ratio if high speed response operation is required.

Related page ...: \cdot P.1-21 "Check of the Model" • P.1-23 "Check of the Combination of the Driver and the Motor" - P.7-65 "S-T Characteristics"

MFME 1.5 kW to 4.5 kW

* Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

MFME series (Middle inertia)				
Motor output		1.5 kW	2.5 kW	4.5kW
Motor model	MFME	15** *	25**1*	45**1*
LL	Without brake	142	136	156
	With brake	167	169	189
LR		70		
S		35		
LA		200	235	
LB		114.3	200	
LC		176	220	
LD		233	266	
LE		3.2	4	
LF		18	16	
LG		60		
LH		140	162	
LM	Without brake	98	91	111
	With brake	123	124	144
LZ		176		
	LW	55		
	LK	50		
	KW	10h9		
	KH	8		
	RH	30		
Mass (kg)	Without brake	9.5	13.1	18.2
	With brake	12.5	17.2	23.1
Connector specifications		Refer to P.2-49 "Specifications of Motor connector"		

Caution $\cdots:$ Reduce the moment of inertia ratio if high speed response operation is required.

6. Dimensions

Motor

MGME 900W to 3.0kW (DesignOrder: 1)

* Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

MGME series (Middle inertia)					
Motor output			900W	2.0kW	3.0kW
Motor		MGME	09** ${ }^{\text {* }}$	20** 1 *	30** 1 *
LL		Without brake	155.5	163.5	209.5
		With brake	180.5	188.5	234.5
LR			70	80	
S			22	35	
LA			145	200	
LB			110	114.3	
LC			130	176	
LD			165	233	
LE			6	3.2	
LF			12	18	
LG			60		
LH			116	140	
LM		Without brake	111.5	119.5	165.5
		With brake	136.5	144.5	190.5
LZ			9	13.5	
		LW	45	55	
		LK	41	50	
		KW	8h9	10h9	
		KH	7	8	
	RH		18	30	
Mass (kg)		Without brake	6.7	14.0	20.0
		With brake	8.2	17.5	23.5
Connector specifications			Refer to P.2-49 "Specifications of Motor connector"		

[^95]
6. Dimensions

Motor

MGME 900W to 3.0kW (DesignOrder: C)

* Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

MGME series (Middle inertia)				
Motor output		900W	2.0kW	3.0kW
Motor model	MGME	09 * C *	20** C *	30** C *
LL	Without brake	157.5	165.5	211.5
	With brake	182.5	190.5	236.5
LR		70	80	
S		22	35	
LA		145	200	
LB		110	114.3	
LC		130	176	
LD		165	233	
LE		6	3.2	
LF		12	18	
LG		84		
LH		116	140	
LM	Without brake	111.5	119.5	165.5
	With brake	136.5	144.5	190.5
LZ		9	13.5	
	LW	45	55	
	LK	41	50	
	KW	8h9	10h9	
	KH	7	8	
RH		18	30	
Mass (kg)	Without brake	6.7	14.0	20.0
	With brake	8.2	17.5	23.5
Connector specifications		Refer to P.2-49 "Specifications of Motor connector"		

Caution … Reduce the moment of inertia ratio if high speed response operation is required.

6. Dimensions

Motor

MGME $4.5 \mathrm{~kW}, 6.0 \mathrm{~kW}$

<MGME 6.0kW> Motor connector

Shaft end spec. (Key way shaft)

* Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

MGME series (Middle inertia)			
Motor output		4.5 kW	6.0kW
Motor model	MGME	45**1*	60**1*
LL	Without brake	266	312
	With brake	291	337
LR		113	
S		42	
LA		200	
LB		114.3	
LC		176	
LD		233	
LE		3.2	
LF		24	
LG		60	
LH		140	184
LM	Without brake	222	268
	With brake	247	293
LZ		13.5	
	LW	96	
	LK	90	
	KW	12h9	
	KH	8	
	RH	$37-0.2$	
Mass (kg)	Without brake	29.4	36.4
	With brake	33.0	40.4
Connector specifications		Refer to P.2-49 "Specifications of Motor connector"	

Caution $\cdots:$ Reduce the moment of inertia ratio if high speed response operation is required.

[^96]MHMD 200W to 750W

* Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

MHMD series (High inertia)				
Motor output		200W	400W	750W
Motor model	MHMD	02**1*	04** 1*	08** ${ }^{\text {* }}$
LL	Without brake	99	118.5	164.2
	With brake	135.5	155	127.2
LR		30		35
S		11	14	19
LA		70		90 ± 0.2
LB		50		70
LC		60		80
LE		3		
LF		6.5		8
LH		43		53
LZ		4.5		6
$\begin{array}{\|c} \hline \text { D } \\ \text { 法㥒 } \end{array}$	LW	30		35
	LK	22		25
	RH	10	12.5	17.5
	LW	20	25	25
	LK	18	22.5	22
	KW	4h9	5h9	6h9
	KH	4	5	6
	RH	8.5	11	15.5
	TP	M4 depth 8	M5 depth 10	
Mass (kg)	Without brake	0.96	1.4	2.5
	With brake	1.4	1.8	3.3
Connector specifications		Refer to P.2-48 "Specifications of Motor connector"		

Caution \cdots Reduce the moment of inertia ratio if high speed response operation is required.

6. Dimensions

Motor

MHME 1.0kW to 7.5 kW (DesignOrder: 1)

<MHME 1.0kW~5.0kW>

Shaft end spec.
(Key way shaft)

<MHME 7.5kW>

Shaft end spec. (Key way shaft)

* Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

MHME series (High inertia)								
Motor output		1.0kW	1.5 kW	2.0kW	3.0 kW	4.0kW	5.0kW	7.5kW
Motor model	MHME	10**1*	15**1*	20**1*	30**1*	40**1*	50**1*	75**1*
LL	Without brake	173	190.5	177	196	209.5	238.5	357
	With brake	198	215.5	202	221	234.5	263.5	382
LR		70		80				113
S		22		35				42
LA		145		200				
LB		110		114.3				
LC		130		176				
LD		165		233				
LE		6		3.2				
LF		12		18				24
LG		60						
	LH	116		140				184
LM	Without brake	129	146.5	133	152	165.5	194.5	313
	With brake	154	171.5	158	177	190.5	219.5	338
LZ		9		13.5				
	LW	45		55				96
	LK	41		50				90
	KW	8h9		10h9				12h9
	KH	7		8				
	RH	18		30				$37-0.2$
Mass (kg)	Without brake	6.7	8.6	12.2	16.0	18.6	23.0	42.3
	With brake	8.1	10.1	15.5	19.2	21.8	26.2	46.2
Connector specifications		Refer to P.2-49 "Specifications of Motor connector"						

Caution $\cdots \%$ Reduce the moment of inertia ratio if high speed response operation is required.

[^97]MHME 1.0 kW to 5.0 kW (DesignOrder: C)

* Dimensions are subject to change without notice. Contact us or a dealer for the latest information.

MHME series (High inertia)							
Motor output		1.0kW	1.5 kW	2.0kW	3.0kW	4.0kW	5.0kW
Motor model	MHME	10** C *	15 ** C *	20** C *	30** C *	40 * C *	50**C *
LL	Without brake	175	192.5	179	198	211.5	240.5
	With brake	200	217.5	204	223	236.5	265.5
LR		70		80			
S		22		35			
LA		145		200			
LB		110		114.3			
LC		130		176			
LD		165		233			
LE		6		3.2			
LF		12		18			
LG		84					
LH		116		140			
LM	Without brake	129	146.5	133	152	165.5	194.5
	With brake	154	171.5	158	177	190.5	219.5
LZ		9		13.5			
	LW	45		55			
	LK	41		50			
	KW	8h9		10h9			
	KH	7		8			
	RH	18		30			
Mass (kg)	Without brake	6.7	8.6	12.2	16.0	18.6	23.0
	With brake	8.1	10.1	15.5	19.2	21.8	26.2
Connector specifications		Refer to P.2-49 "Specifications of Motor connector"					

Caution $\cdots \%$ Reduce the moment of inertia ratio if high speed response operation is required.

7. Options

Noise Filter

When you install one noise filter at the power supply for multi-axes application, contact to a manufacture of the noise filter. If noise margin is required, connect 2 filters in series to emphasize effectiveness.

- Options

Option part No.	Voltage specifications for driver	Manufacturer's part No.	Applicable driver (frame)	Manufacturer
DV0P4170	Single phase $100 \mathrm{~V}, 200 \mathrm{~V}$	SUP-EK5-ER-6	A and B-frame	Okaya Electric Ind.

$\underset{\text { (transparent) }}{\substack{\text { Terminal cover }}}$

[Unit: mm]

| Option | Ooltage
 part No. | Vpecifications
 for driver | Manufacturer's
 part No. | Applicable
 driver (frame) |
| :---: | :---: | :---: | :---: | :---: | Manufacturer

[DV0PM20042, DV0P4220]

[Size]

	A	B	C	D	E	F	G	H
DVOPM 20042	115	105	95	70	43	10	52	5.5
DVOP4220	145	135	125	70	50	10	52	5.5
DVOPM20043	165	136	165	90	80	40	54	5.5

For single phase application, use 2 terminals among 3 terminals, leaving the remaining terminal unconnected.
[DVOPM20043]

Circuit diagram

- Recommended components

Part No.	$\begin{array}{c}\text { Voltage } \\ \text { specifications } \\ \text { for driver }\end{array}$	$\begin{array}{c}\text { Current rating } \\ \text { (A) }\end{array}$	$\begin{array}{c}\text { Applicable driver } \\ \text { (frame) }\end{array}$	Manufacturer
	RTHN-5010	Single phase	10	A, B, C-frame
$\begin{array}{c}\text { M }\end{array}$				
	RTHN-5030	100V, 200V		

[RTHN-5010]

[RTHN-5030]
[RTHN-5050]

Remarks $\cdots \%$ - Select a noise filter of capacity that exceeds the capacity of the power source (also check for load condition).

- For detailed specification of the filter, contact the manufacturer.

part No.	Voltage specifications for driver	Current rating (A)	Applicable driver (frame)	Manufacturer
FS5559-60-34		60	G-frame	Schaffner
FS5559-80-34		80	H-frame	
FN258L-16-07	3-phase 400V	16	D, E-frame	
FN258L-30-07		30	F-frame	
FN258-42-07		42	G, H-frame	
FN258-42-33		42		

[FS5559-60-34, FS5559-80-34]

Circuit diagram

[FN258L-16-07]

[FN258L-30-07]

Circuit diagram

Circuit diagram
 check for load condition).

- For detailed specification of the filter, contact the manufacturer.

Caution \cdots. Use options correctly after reading operation manuals of the options to better understand the precautions.
Take care not to apply excessive stress to each optional part.

Provide a surge absorber for the primary side of noise filter.

Option part No.	Voltage specifications for driver	Manufacturer's part No.	Manufacturer
DVOP1450	3-phase 200V	$R \cdot A \cdot V-781 B X Z-4$	Okaya Electric Ind.
DVOPM20050	3-phase 400V	$R \cdot A \cdot V-801 B X Z-4$	

[Unit: mm]

Circuit diagram

Option part No.	Voltage specifications for driver	Manufacturer's part No.	Manufacturer
DVOP4190	Single phase $100 \mathrm{~V}, 200 \mathrm{~V}$	$\mathrm{R} \cdot \mathrm{A} \cdot \mathrm{V}-781 \mathrm{BWZ}-4$	Okaya Electric Ind.

[Unit: mm]
Circuit diagram

Remarks \cdots : Take off the surge absorber when you execute a dielectric test to the machine or equipment, or it may damage the surge absorber.

Related page $\cdots \div$

- P.2-2 "Conformance to international standards"
- P.2-10 "Driver and List of Applicable Peripheral Equipments"

Install noise filters for signal lines to all cables (power cable, motor cable, encoder cable and interface cable)

- Options

<24 V Power cable, Motor cable, Encoder cable, Interface cable, USB cable>

Option part No.	Manufacturer's part No.	Manufacturer
DVOP1460	ZCAT3035-1330	TDK Corp.

Remarks . $\%$ To connect the noise filter to
[Unit: mm]
Mass: 62.8 g

[Unit: mm]
the connector XB connection cable, adjust the sheath length at the tip of the cable, as required.

- Recommended components

<Power cable>

Part No.	Applicable driver (frame)	Manufacturer
RJ8035	E-frame 200 V, F-frame 200 V	KK-CORP.CO.JP
RJ8095	G-frame, H-frame	

Manufacturer's part No.	Current value	$\begin{gathered} 100 \mathrm{kHz} \\ (\mu \mathrm{H}) \end{gathered}$	Dimension [Unit: mm]							
			A	B	C	D1	D2	Core thikness	E	F
RJ8035	35A	9.9 ± 3	170	150	23	80	53	24	R3.5	7
RJ8095	95A	7.9 ± 3	200	180	34	130	107	35	R3.5	7

<Motor cable>

Part No.	Applicable driver (frame)	Manufacturer
T400-61D	G-frame, H-frame	MICROMETALS

Part No.	MFECAO * * 0EAM	Compatible motor output	MSMD 50W to 750W, MHMD 200W to 750W
Speciificaions	For 20-bit incremental encoder (Without battery box)		

Title	Part No.	Manufacturer
Connector (Driver side)	3E206-0100 KV	Sumitomo 3M *1
Shell kit	3E306-3200-008	
Connector (Motor side)	$172160-1$	Tyco Electronics
Connector pin	$170365-1$	
Cable	$0.20 \mathrm{~mm}^{2} \times 3 \mathrm{P}$ (6-wire type)	Oki Electric Cable Co., Ltd.

$\mathbf{L}(\mathbf{m})$	Part No.
3	MFECA0030EAM
5	MFECA0050EAM
10	MFECA0100EAM
20	MFECA0200EAM

*1 Old model number: 55100-0670 (Japan Molex Inc.)

Title	Part No.	Manufacturer
Connector (Driver side)	3E206-0100 KV	
Shell kit	3E306-3200-008	Sumitomo 3M *1
Connector	JN6FR07SM1	
Connector pin	LY10-C1-A1-10000	Japan Aviation
Cable	AWG24×4P, AWG22×2P	Hitachi Cable, Ltd.

$\mathbf{L}(\mathbf{m})$	Part No.
3	MFECA0030MJD
5	MFECA0050MJD
10	MFECA0100MJD
20	MFECA0200MJD

*1 Old model number: 55100-0670 (Japan Molex Inc.)

Part No.	MFECAO * * OMJE (Highly bendable type, Direction of motor shaft)	Compatible motor output	50W to 750W (200V)
	MFECAO * * OMKE (Highly bendable type, Opposite direction of motor shaft)		
	MFECA0**OTJE (Standard bendable type, Direction of motor shaft)		
	MFECAO * * OTKE (Standard bendable type, Opposite direction of motor shaft)		
Specifications	For 17-bit absolute encoder (With battery box)		

*1 Old model number: 55100-0670 (Japan Molex Inc.)

Part No.	MFECAO $* *$ 0ETD	Compatible motor output	$400 \mathrm{~W}(400 \mathrm{~V}), 600 \mathrm{~W}(400 \mathrm{~V}), 750 \mathrm{~W}(400 \mathrm{~V})$, 0.9 kW to 15.0 kW
Speciications	For 20-bit incremental encoder (Without battery box), Design order: 1		

Title	Part No.	Manufacturer	L (m)	Part No.
Connector (Driver side)	3E206-0100 KV	Sumitomo 3M *1	3	MFECA0030ETD
Shell kit	3Е306-3200-008		5	MFECA0050ETD
Connector	JN2DS10SL1-R	Japan Aviation Electronics Ind.	10	MFECA0100ETD
Connector pin	JN1-22-22S-PKG100		20	MFECA0200ETD
Cable	$0.2 \mathrm{~mm}^{2} \times 3 \mathrm{P}$	Oki Electric Cable Co., Ltd.		

*1 Old model number: 55100-0670 (Japan Molex Inc.)
Caution … Option cable does not conform to IP65 and IP67.
Related page: •P.1-27 "Junction cable for motor" • P.2-48 "Specifications of Motor connector"

7. Options

Junction Cable for Encoder

Part No.	MFECA0 ** OESD	Compatible motor output	0.9 kW to 5.0kW (IP65 Motor)
Specifications	For 20-bit incremental encoder (Without battery box), Design order: C		

*1 Old model number: 55100-0670 (Japan Molex Inc.)

Part No.	MFECAO **0ETE	Compatible motor output	$400 \mathrm{~W}(400 \mathrm{~V}), 600 \mathrm{~W}(400 \mathrm{~V}), 750 \mathrm{~W}(400 \mathrm{~V})$, 0.9 kW to 15.0kW
Specifications	For 17-bit absolute encoder (With battery box), Design order: 1		

*1 Old model number: 55100-0670 (Japan Molex Inc.)

Part No.	MFECAO $* *$ OESE	Compatible motor output	0.9 kW to 5.0kW (IP65 Motor)
Speciifications	For 17-bit absolute encoder (With battery box), Design order: C		

Title	Part No.	Manufacturer	L (m)	Part No.
Connector (Driver side)	3E206-0100 KV	Sumitomo 3M *1	3	MFECA0030ESE
Shell kit	3E306-3200-008		5	MFECA0050ESE
Connector (Motor side)	N/MS3106B20-29S	Japan Aviation Electronics Ind.	10	MFECA0100ESE
Cable clamp	N/MS3057-12A		20	MFECA0200ESE
Cable	$0.2 \mathrm{~mm}^{2} \times 4 \mathrm{P}$ (8-wire type)	ectric Cable Co		

*1 Old model number: 55100-0670 (Japan Molex Inc.)

Caution …s Option cable does not conform to IP65 and IP67.

Title	Part No.	Manufacturer
Connector	172159-1	Tyco Electronics
Connector pin	170366-1	
Rod terminal	AI0.75-8GY	Phoenix Contact
Nylon insulated round terminal	N1.25-M4	J.S.T Mfg. Co., Ltd.
Cable	ROBO-TOP 600V 0.75mm² 4-wire type	Daiden Co.,Ltd.

$\mathbf{L}(\mathbf{m})$	Part No.
3	MFMCA0030EED
5	MFMCA0050EED
10	MFMCA0100EED
20	MFMCA0200EED

Part No.	MFMCAO * * ONJD (Highly bendable type, Direction of motor shaft)	Applicable model	MSME	50W to 750W
	MFMCAO * * ONKD (Highly bendable type, Opposite direction of motor shaft)			
	MFMCAO * * ORJD (Standard bendable type, Direction of motor shaft)			
	MFMCA0 * * ORKD (Standard bendable type, Opposite direction of motor shaft)			

Opposite direction of motor shaft

Caution ...:
Motor cable for opposite direction of motor shaft cannot be used with a motor 50W and 100W.
$\left.\begin{array}{|c|c|c|}\hline \text { Title } & \text { Part No. } & \text { Manufacturer } \\ \hline \text { Connector } & \text { JN8FT04SJ1 } & \begin{array}{c}\text { Japan Aviation } \\ \text { Electronics Ind. }\end{array} \\ \hline \begin{array}{c}\text { Connector pin }\end{array} & \text { ST-TMH-S-C1B-3500 }\end{array}\right]$ Phoenix Contact.

$\mathbf{L}(\mathbf{m})$	Part No.
3	MFMCA0030NJD
5	MFMCA0050NJD
10	MFMCA0100NJD
20	MFMCA0200NJD

Caution … Option cable does not conform to IP65 and IP67.
Related page ... $:$ •P.1-27 "Junction cable for motor" • P.2-48 "Specifications of Motor connector"

Part No.	MFMCDO**2ECD		Applicable model	MSME 750 W (400V), 1.0kW to 2.0 kW , MDME 1.0 kW to 2.0 kW , MHME 1.0 kW to 1.5 kW , MGME 0.9 kW			
	Title	Part No.			Manufacturer	L (m)	Part No.
	Connector	JL04V-6A20-4SE-EB-R			Japan Aviation Electronics Ind.	3	MFMCD0032ECD
	Cable clamp	JL04-2022CK(14)-R				5	MFMCD0052ECD
	Rod terminal	NTUB-2			J.S.T Mfg. Co., Ltd.	10	MFMCD0102ECD
	Nylon insulated round terminal	N2-M4			J.S.T Mfg. Co., Ltd.	20	MFMCD0202ECD
	Cable	ROBO-TOP 600V $2.0 \mathrm{~mm}^{2}$			Daiden Co.,Ltd.		

Part No.	MFMCE0 $* * 2 E C D$	Applicable model	MHME 2.0kW

Title	Part No.	Manufacturer	L (m)	Part No.
Connector	JL04V-6A22-22SE-EB-R	Japan Aviation Electronics Ind.	3	MFMCE0032ECD
Cable clamp	JL04-2022CK(14)-R		5	MFMCE0052ECD
Rod terminal	NTUB-2	J.S.T Mfg. Co., Ltd.	10	MFMCE0102ECD
Nylon insulated round terminal	N2-M4	J.S.T Mfg. Co., Ltd.	20	MFMCE0202ECD
Cable	ROBO-TOP $600 \mathrm{~V} 2.0 \mathrm{~mm}^{2}$	Daiden Co.,Ltd.		

Part No.	MFMCAO**3ECT	Applicable	MSME	3.0 kW to 5.0 kW,	MDME	3.0 kW to 5.0 kW
		model	MHME	3.0 kW to 5.0 kW,	MGME	2.0 kW to 3.0 kW

Title	Part No.	Manufacturer
Connector	JL04V-6A22-22SE-EB-R	Japan Aviation Electronics Ind.
Cable clamp Nylon insulated round terminal	NL04-2022CK(14)-R	J.S.5

L (m)	Part No.
3	MFMCA0033ECT
5	MFMCA0053ECT
10	MFMCA0103ECT
20	MFMCA0203ECT

Caution $\cdots \therefore$ Option cable does not conform to IP65 and IP67.
Related page ...:

- P.1-27 "Junction cable for motor" • P.2-48 "Specifications of Motor connector"

Title	Part No.	Manufacturer
Connector	JL04V-6A20-18SE-EB-R	Japan Aviation Electronics Ind.
Cable clamp	JLO4-2022CK(14)-R	

$\mathbf{L}(\mathbf{m})$	Part No.
3	MFMCA0032ECD
5	MFMCA0052ECD
10	MFMCA0102ECD
20	MFMCA0202ECD

| Part No. | MFMCFO * * 2ECD | $\begin{array}{l}\text { Applicable } \\ \text { model }\end{array}$ | MFME 1.5kW (400V), 2.5kW |
| :--- | :--- | :--- | :--- | :--- |

Title	Part No.	Manufacturer	L (m)	Part No.
Connector	JL04V-6A24-11SE-EB-R	Japan Aviation Electronics Ind.	3	MFMCF0032ECD
Cable clamp	JL04-2428CK(14)-R		5	MFMCF0052ECD
Rod terminal	NTUB-2	Phoenix Contact	10	MFMCF0102ECD
Nylon insulated round terminal	N2-M4	J.S.T Mfg. Co., Ltd.	20	MFMCF0202ECD
Cable	ROBO-TOP $600 \mathrm{~V} 2.0 \mathrm{~mm}^{2}$	Daiden Co.,Ltd.		

Part No.	MFMCDO ** 3ECT	$\begin{array}{l}\text { Applicable } \\ \text { model }\end{array}$	MFME 4.5kW

Title	Part No.	Manufacturer
Connector	JL04V-6A24-11SE-EB-R	Japan Aviation Electronics Ind.
Cable clamp	JL04-2428CK(17)-R	J.
Nylon insulated round terminal	ROBO-TOP $600 \mathrm{~V} 3.5 \mathrm{~mm}^{2}$	Daiden Co.,Ltd.
Cable		

$\mathbf{L}(\mathbf{m})$	Part No.
3	MFMCA0033ECT
5	MFMCA0053ECT
10	MFMCA0103ECT
20	MFMCA0203ECT

Caution \cdots Option cable does not conform to IP65 and IP67.
Related page ...: • P.1-27 "Junction cable for motor" • P.2-48 "Specifications of Motor connector"

7. Options

Supplement

Junction Cable for Motor (With brake)

			MSME	1.0 kW to $2.0 \mathrm{~kW}(200 \mathrm{~V})$
Part No.	MFMCA0**2FCD	Applicable	MDME	1.0 kW to $2.0 \mathrm{~kW}(200 \mathrm{~V})$
		MFME	$1.5 \mathrm{~kW}(200 \mathrm{~V})$	
			MHME	1.0 kW to $1.5 \mathrm{~kW}(200 \mathrm{~V})$
		MGME	$0.9 \mathrm{~kW}(200 \mathrm{~V})$	

Title		Part No.	Manufacturer	L (m)	Part No.
Connector		JL04V-6A20-18SE-EB-R	Japan Aviation Electronics Ind.	3	MFMCA0032FCD
Cable clamp		JL04-2022CK(14)-R		5	MFMCA0052FCD
Rod terminal		NTUB-2	J.S.T Mfg. Co., Ltd.	10	MFMCA0102FCD
Nylon insulated round terminal	Earth	N2-M4	J.S.T Mfg. Co., Ltd.	20	MFMCA0202FCD
	Brake	N1.25-M4			
Cable		ROBO-TOP 600V $0.75 \mathrm{~mm}^{2}$ and ROBO-TOP 600V $2.0 \mathrm{~mm}^{2}$	Daiden Co.,Ltd.		

			MSME	750W to 2.0kW (400V)
Part No.	MFMCEO * * 2FCD	Applicable	MDME	400W to 2.0kW (400V)
		model	MFME	$1.5 \mathrm{~kW}(400 \mathrm{~V}), \quad 2.5 \mathrm{~kW}$
		MGME	$0.9 \mathrm{~kW}(400 \mathrm{~V})$	
		MHME	$1.0 \mathrm{~kW}(400 \mathrm{~V}), \quad 1.5 \mathrm{~kW}(400 \mathrm{~V}), \quad 2.0 \mathrm{~kW}$	

Title		Part No.	Manufacturer	L (m)	Part No.
Connector		JL04V-6A24-11SE-EB-R	Japan Aviation Electronics Ind.	3	MFMCE0032FCD
Cable clamp		JL04-2428CK(17)-R		5	MFMCE0052FCD
Rod terminal		NTUB-2	J.S.T Mfg. Co., Ltd.	10	MFMCE0102FCD
Nylon insulated round terminal	Earth	N2-M4	J.S.T Mfg. Co., Ltd.	20	MFMCE0202FCD
	Brake	N1.25-M4			
Cable		ROBO-TOP 600V $0.75 \mathrm{~mm}^{2}$ and ROBO-TOP 600V $2.0 \mathrm{~mm}^{2}$	Daiden Co.,Ltd.		

Caution $\cdots:$ Option cable does not conform to IP65 and IP67.
Related page: •P.1-27 "Junction cable for motor" • P.2-48 "Specifications of Motor connector"

Part No.	MFMCAO * * 3FCT	Applicable model	MSM MFM MGM	3.0 kW to 5.0 kW 4.5 kW , 2.0kW to 4.5 kW	MDME MHME	3.0 kW to 5.0 kW 3.0 kW to 5.0 kW

Title		Part No.	Manufacturer
Connector		JL04V-6A24-11SE-EB-R	Japan Aviation Electronics Ind.
Cable clam		JL04-2428CK(17)-R	
Nylon insulated round terminal	Earth	N5.5-5	J.S.T Mfg. Co., Ltd.
	Brake	N1.25-M4	
Cable		ROBO-TOP $600 \mathrm{~V} 0.75 \mathrm{~mm}^{2}$ and ROBO-TOP $600 \mathrm{~V} 3.5 \mathrm{~mm}^{2}$	Daiden Co.,Ltd.

$\mathbf{L}(\mathbf{m})$	Part No.
3	MFMCA0033FCT
5	MFMCA0053FCT
10	MFMCA0103FCT
20	MFMCA0203FCT

7. Options

Supplement

Junction Cable for Brake

Part No. MFMCBO * * 0GET

Applicable model

MSMD 50W to 750W, MHMD 200W to 750W

Title	Part No.	Manufacturer
Connector	172157-1	Tyco Electronics
Connector pin	170366-1, 170362-1	
Nylon insulated round terminal	N1.25-M4	J.S.T Mfg. Co., Ltd.
Cable	ROBO-TOP 600V $0.75 \mathrm{~mm}^{2} \times 2$-wire type	Daiden Co.,Ltd.

$\mathbf{L}(\mathbf{m})$	Part No.
3	MFMCB0030GET
5	MFMCB0050GET
10	MFMCBO 100GET
20	MFMCBO200GET

Part No.	MFMCB0 * * 0PJT (Highly bendable type, Direction of motor shaft)	Applicable model	MSME	50W to 750W
	MFMCBO ** OPKT (Highly bendable type, Opposite direction of motor shaft)			
	MFMCB0** OSJT (Standard bendable type, Direction of motor shaft)			
	MFMCB0** OSKT (Standard bendable type, Opposite direction of motor shaft)			

Opposite direction of motor shaft

Title	Part No.	Manufacturer
Connector	JN4FT02SJMR	Japan Aviation Electronics Ind.
Connector pin	ST-TMH-S-C1B-3500	
Nylon insulated round terminal	N1.25-M4	J.S.T Mfg. Co., Ltd.
Cable	AWG22	Hitachi Cable, Ltd.

L(m)	Part No.
3	MFMCB0030PJT
5	MFMCB0050PJT
10	MFMCB0100PJT
20	MFMCB0200PJT

Connector Kit for Interface

Part No. DVOP4350

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	$10150-3000$ PE equivalent	1	Sumitomo 3M *1	For Connector X4 (50-pins)
Connector cover	$10350-52 A 0-008$ equivalent	1		

*1 Old model number: Connector 54306-5019, Connector cover 54331-0501 (Japan Molex Inc.)

- Pin disposition (50 pins) (viewed from the soldering side)

1) Check the stamped pin-No. on the connector body while making a wiring.
2) For the function of each signal title or its symbol, refer to the wiring example of the connector X 4 .
3) Do not connect anything to NC pins in the above table.

Interface Cable

Part No.	DV0P4360

- Table for wiring

Pin No.	color								
1	Orange (Red1)	11	Orange (Black2)	21	Orange (Red3)	31	Orange (Red4)	41	Orange (Red5)
2	Orange (Black1)	12	Yellow (Black1)	22	Orange (Black3)	32	Orange (Black4)	42	Orange (Black5)
3	Gray (Red1)	13	Gray (Red2)	23	Gray (Red3)	33	Gray (Red4)	43	Gray (Red5)
4	Gray (Black1)	14	Gray (Black2)	24	Gray (Black3)	34	White (Red4)	44	White (Red5)
5	White (Red1)	15	White (Red2)	25	White (Red3)	35	White (Black4)	45	White (Black5)
6	White (Black1)	16	Yellow (Red2)	26	White (Black3)	36	Yellow (Red4)	46	Yellow (Red5)
7	Yellow (Red1)	17	Yel (Blk2)/Pink (Blk2)	27	Yellow (Red3)	37	Yellow (Black4)	47	Yellow (Black5)
8	Pink (Red1)	18	Pink (Red2)	28	Yellow (Black3)	38	Pink (Red4)	48	Pink (Red5)
9	Pink (Black1)	19	White (Black2)	29	Pink (Red3)	39	Pink (Black4)	49	Pink (Black5)
10	Orange (Red2)	20	-	30	Pink (Black3)	40	Gray (Black4)	50	Gray (Black5)

<Remarks>

Color designation of the cable e.g.) Pin-1 Cable color: Orange (Red1) : One red dot on the cable The shield of this cable is connected to the connector shell but not to the terminal.

Connector Kit for Communication Cable (for RS485, RS232)

Part No. DVOPM20024

- Components

Title	Part No.	Manufacturer	Note
Connector	$2040008-1$	Tyco Electronics	For Connector X2 (8-pins)

- Pin disposition of connector, connector X2

- Dimensions

Connector Kit for Safety

Part No. DVOPM20025

- Components

Title	Part No.	Manufacturer	Note
Connector	$2013595-1$	Tyco Electronics	For Connector X3 (8-pins)

- Pin disposition of connector, connector X3

Shell: FG
(Viewed from cable)

- Dimensions

Connector Kit for External Scale

Part No.	DVOPM20026

- Components

Title	Part No.	Manufacturer	Note
Connector	MUF-PK10K-X	J.S.T Mfg. Co., Ltd.	For Connector X5

- Pin disposition of connector, connector X5 • Dimensions

Remarks $\cdots \%$ • Connector X1: use with commercially available cable.

- Configuration of connector X1: USB mini-B
\square

- For crimp tool etc., necessary to produce a cable, access the web site of the manufacturer or consult with the manufacturer for details. For inquiries of manufacturer, refer to P.7-125 "List of Peripheral Equipments".

Connector Kit

Connector Kit for Encoder

Part No.	DVOPM20010

- Components

Title	Part No.	Manufacturer	Note
Connector (Driver side)	$3 \mathrm{E} 206-0100 \mathrm{KV}$	Sumitomo 3M ${ }^{\text {¹ }}$	For Connector X6
Shell kit	3E306-3200-008		

*1 Old model number: 55100-0670 (Japan Molex Inc.)

- Pin disposition of connector, connector X6 • Dimensions

(Viewed from cable)

Connector Kit for Analog Monitor Signal

Part No. DVOPM20031

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	510040600	1	Molex Inc	For Connector X7 (6-pins)
Connector pin	500118100	6		

- Pin disposition of connector, connector X7 • Dimensions

Connector Kit for Power Supply Input

Part No. DVOPM20032 (For A to D-frame: Single row type)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	05JFAT-SAXGF	1	J.S.T Mfg. Co., Ltd.	For Connector XA
Handle lever	J-FAT-OT	2		

- For crimp tool etc., necessary to produce a cable, access the web site of the manufacturer or consult with the manufacturer for details. For inquiries of manufacturer, refer to P.7-125 "List of Peripheral Equipments".

Part No. DVOPM20033 (For A to D-frame: double row type)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	05JFAT-SAXGSA-C	1	J.S.T Mfg. Co., Ltd.	For Connector XA
Handle lever	J-FAT-OT	2		

- Dimensions

Part No. DVOPM20044 (For E-frame 200 V)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	05JFAT-SAXGSA-L	1	J.S.T Mfg. Co., Ltd.	For Connector XA
Handle lever	J-FAT-OT-L	2		

Part No.
DVOPM20053 (For D-frame 400 V, E-frame 400 V and 24 V Input power)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	02MJFAT-SAGF	1	J.S.T Mfg. Co., Ltd.	For Connector XD
Handle lever	MJFAT-OT	2		

Part No. DVOPM20051 (For D-frame 400 V)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	03JFAT-SAYGSA-M	1	J.S.T Mfg. Co., Ltd.	For Connector XA
Handle lever	J-FAT-OT-L	2		

Part No. DVOPM20052 (For E-frame 400 V)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	03JFAT-SAYGSA-L	1	J.S.T Mfg. Co., Ltd.	For Connector XA
Handle lever	J-FAT-OT-L	2		

Connector Kit

Connector Kit for Regenerative Resistor Connection (E-frame)

Part No. DVOPM20045 (For E-frame)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	04JFAT-SAXGSA-L	1	J.S.T Mfg. Co., Ltd.	For Connector XC
Handle lever	J-FAT-OT-L	2		

Part No. DV0PM20055 (For D-frame 400 V)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	04JFAT-SAXGSA-M	1	J.S.T Mfg. Co., Ltd.	For Connector XC
Handle lever	J-FAT-OT-L	2		

Connector Kit for Motor Connection

Part No. DVOPM20034 (For A to D-frame)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	06JFAT-SAXGF	1	J.S.T Mfg. Co., Ltd.	For Connector XB
Handle lever	J-FAT-OT	2		

Part No. DVOPM20046 (For E-frame)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	03JFAT-SAXGSA-L	1	J.S.T Mfg. Co., Ltd.	For Connector XB
Handle lever	J-FAT-OT-L	2		

Part No. DVOPM20054 (For D-frame 400 V)

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	03JFAT-SAXGSA-M	1	J.S.T Mfg. Co., Ltd.	For Connector XB
Handle lever	J-FAT-OT-L	2		

Connector Kit for Motor/Encoder Connection

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3 E206-0100 KV	1	Sumitomo 3M ${ }^{\text {+1 }}$	For Connector X6 (6-pins)
Shell kit	3E306-3200-008	1	1	For Encoder cable
(7-pins)				

*1 Old model number: 55100-0670 (Japan Molex Inc.)

- Pin disposition of connector, connector X6
- Pin disposition of connector for encoder cable
- Pin disposition of connector for motor cable

Remarks ...\%

Secure the gasket in place without removing it from the connector. Otherwise, the degree of protection of IP67 will not be guaranteed.

[Opposite direction of motor shaft]

* Pins 2 and 5 are left unused (NC) with an incremental encoder.

Caution …

- When IP65 or IP67 are necessary, the customer must give approriate processing.

Remarks $\cdots:$

- For crimp tool etc., necessary to produce a cable, access the web site of the manufacturer or consult with the manufacturer for details. For inquiries of manufacturer, refer to P.7-125 "List of Peripheral Equipments".

Part No.	DVOPM20036	Applicable model	MSME MDME	$750 \mathrm{~W}(400 \mathrm{~V}), 1.0 \mathrm{~kW}$ to 2.0 kW, MHM Specifications	Design order: 1

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M *1	For Connector X6 (6-pins)
Shell kit	3E306-3200-008	1		
Encoder connector	JN2DS10SL1-R	1	Japan Aviation	For Encoder cable
Connector pin	JN1-22-22S-PKG100	5	Electronics Ind.	
Motor connector	JL04V-6A-20-4SE-EB-R	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	JL04-2022CK(14)-R	1		

*1 Old model number: 55100-0670 (Japan Molex Inc.)

Part No.	DV0P4310	Applicable model	MSME	1.0 kW to 2.0 kW ,	MDME	1.0 kW to 2.0 kW	Without
Specifications	Design order: C		M MME	1.0 kW to 1.5 kW ,	MGME	0.9kW	brake

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M ${ }^{11}$	For Connector X6 (6-pins)
Shell kit	3Е306-3200-008	1		
Encoder connector	N/MS3106B20-29S	1	Japan Aviation Electronics Ind.	For Encoder cable
Cable clamp	N/MS3057-12A	1		
Motor connector	N/MS3106B20-4S	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	N/MS3057-12A	1		

*1 Old model number: 55100-0670 (Japan Molex Inc.)

Part No.	DV0PM20037	Applicable	MSME	3.0 kW to 5.0 kW,	MDME	3.0 kW to 5.0 kW		Without		
model									MHME	brake
:---	:---	:---	:---	:---	:---					

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M *1	For Connector X6 (6-pins)
Shell kit	3E306-3200-008	1		
Encoder connector	JN2DS10SL1-R	1	Japan Aviation Electronics Ind.	For Encoder cable
Connector pin	JN1-22-22S-PKG100	5		
Motor connector	JL04V-6A22-22SE-EB-R	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	JL04-2022CK(14)-R	1		

*1 Old model number: 55100-0670 (Japan Molex Inc.)

Part No.	DV0P4320	Applicable model	MSME	3.0 kW to 5.0 kW ,	MDME	3.0 kW to 5.0 kW	Without
Specifications	Design order: C		MHME	2.0 kW to 5.0 kW ,	MGME	2.0 kW to 3.0 kW	bra

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M *1	For Connector X6 (6-pins)
Shell kit	3E306-3200-008	1		
Encoder connector	N/MS3106B20-29S	1	Japan Aviation Cable clamp	N/MS3057-12A
Motor connector	N/MS3106B22-22S	1	1	Japan Aviation
Cable clamp	N/MS3057-12A	1	Electronics Ind.	For Motor cable

[^98]
Caution -..:

- When IP65 or IP67 are necessary, the customer must give approriate processing.

Remarks \cdots :

- For crimp tool etc., necessary to produce a cable, access the web site of the manufacturer or consult with the manufacturer for details. For inquiries of manufacturer, refer to P.7-125 "List of Peripheral Equipments".

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M *1	For Connector X6 (6-pins)
Shell kit	3Е306-3200-008	1		
Encoder connector	JN2DS10SL1-R	1	Japan Aviation Electronics Ind.	For Encoder cable
Connector pin	JN1-22-22S-PKG100	5		
Motor connector	JL04V-6A20-18SE-EB-R	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	JL04-2022CK(14)-R	1		

*1 Old model number: 55100-0670 (Japan Molex Inc.)

Part No.	DVOP4330	Applicable	MSME	1.0 kW to 2.0 kW,	MDME	1.0 kW to 2.0 kW	With model
Specifications	Design order: C		MHME	1.0 kW to 1.5 kW,	MGME	0.9 kW	brake

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M ${ }^{11}$	For Connector X6 (6-pins)
Shell kit	3E306-3200-008	1		
Encoder connector	N/MS3106B20-29S	1	Japan Aviation Electronics Ind.	For Encoder cable
Cable clamp	N/MS3057-12A	1		
Motor connector	N/MS3106B20-18S	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	N/MS3057-12A	1		

*1 Old model number: 55100-0670 (Japan Molex Inc.)

Part No.	DV0PM20039	Applicable model	MSME MDM	750 W to 2.0 kW (400V), 3.0kW to 5.0 kW 400 W to $2.0 \mathrm{~kW}(400 \mathrm{~V}), 3.0 \mathrm{~kW}$ to 5.0 kW	With brake
Specifications	Design order: 1		MFME MHM MGM	$1.5 \mathrm{~kW}(400 \mathrm{~V}), 2.5 \mathrm{~kW}$ to 4.5 kW (Common to with/without brake) 1.0 kW to $1.5 \mathrm{~kW}(400 \mathrm{~V}), 2.0 \mathrm{~kW}$ to 5.0 kW $0.9 \mathrm{~kW}(400 \mathrm{~V}), 2.0 \mathrm{~kW}$ to 4.5 kW	

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M *1	For Connector X6 (6-pins)
Shéll kit	3Е306-3200-008	1		
Encoder connector	JN2DS10SL1-R	1	Japan Aviation Electronics Ind.	For Encoder cable
Connector pin	JN1-22-22S-PKG100	5		
Motor connector	JL04V-6A24-11SE-EB-R	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	JL04-2428CK(17)-R	1		

*1 Old model number: 55100-0670 (Japan Molex Inc.)

Part No.	DV0P4340	Applicable model	MSME	3.0 kW to 5.0 kW ,	MDME	3.0 kW to 5.0 kW	With
Speciications	Design order: C		MHME	2.0 kW to 5.0 kW ,	MGME	2.0 kW to 3.0 kW	ake

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	$3 \mathrm{E} 206-0100 \mathrm{KV}$	1	Sumitomo 3M ${ }^{11}$	For Connector X6 (6-pins)
Shell kit	3Е306-3200-008	1		
Encoder connector	N/MS3106B20-29S	1	Japan Aviation Electronics Ind.	For Encoder cable
Cable clamp	N/MS3057-12A	1		
Motor connector	N/MS3106B24-11S	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	N/MS3057-16A	1		

*1 Old model number: 55100-0670 (Japan Molex Inc.)

Caution …s
 - When IP65 or IP67 are necessary, the customer must give approriate processing.

Remarks...is

- For crimp tool etc., necessary to produce a cable, access the web site of the manufacturer or consult with the manufacturer for details. For inquiries of manufacturer, refer to P.7-125 "List of Peripheral Equipments".

Part No.	DVOPM20056	Applicable model	MDME 7.5 kW to 15.0kW				Without brake
Specilications	Design order: 1		MGME	6.0 kW ,	MHME	7.5 kW	

Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	3E206-0100 KV	1	Sumitomo 3M *1	For Connector X6 (6-pins)
Shell kit	3E306-3200-008	1		
Encoder connector	JN2DS10SL1-R	1	Japan Aviation Electronics Ind.	For Encoder cable
Connector pin	JN1-22-22S-PKG100	5		
Motor connector	JL04V-6A32-17SE-EB-R	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	JL04-32CK(24)-R ${ }^{\text {² }}$	1		

*1 Old model number: 55100-0670 (Japan Molex Inc.)
*2 Cable cover size: $\Phi 22$ to $\Phi 25$. Cable core material is not specified. The user can select the cable compatible with the connector to be used.

| Part No. | DVOPM20057 | Applicable
 model | MDME
 MGME7.5kW to 15.0 kW
 Specifications | Design order: $\mathbf{1}$ | MHME 7.5 kW |
| :--- | :--- | :--- | :--- | :--- | :--- | | With |
| :---: |
| brake |

- Components

Title	Part No.	Number	Manufacturer	Note
Connector (Driver side)	$3 \mathrm{E} 206-0100 \mathrm{KV}$	1	Sumitomo 3M *1	For Connector X6 (6-pins)
Shell kit	3E306-3200-008	1		
Encoder connector	JN2DS10SL1-R	1	Japan Aviation Electronics Ind.	For Encoder cable
Connector pin	JN1-22-22S-PKG100	5		
Motor connector	JL04V-6A32-17SE-EB-R	1	Japan Aviation Electronics Ind.	For Motor cable
Cable clamp	JL04-32CK(24)-R	1		
Brake connector	N/MS3106B14S-2S	1	Japan Aviation Electronics Ind.	For Brake cable
Cable clamp	N/MS3057-6A	1		

*1 Old model number: 55100-0670 (Japan Molex Inc.)
*2 Cable cover size: Ф22 to \$25. Cable core material is not specified. The user can select the cable compatible with the connector to be used.

Connector Kit for Motor/Brake Connection

Part No. DVOPM20040

- Components

Title	Part No.	Number	Manufacturer	Note
Connector	JN4FT02SJM-R	1	Japan Aviation	
Socket contact	ST-TMH-S-C1B-3500	2	Electronics Ind.	

- Pin disposition of connector for brake cable

Remarks \cdots. Secure the gasket in place without removing it from the connector. Otherwise, the degree of protection of IP67 will not be guaranteed.

Caution …

Remarks \cdots :

- When IP65 or IP67 are necessary, the customer must give approriate processing.
- For crimp tool etc., necessary to produce a cable, access the web site of the manufacturer or consult with the manufacturer for details. For inquiries of manufacturer, refer to P.7-125 "List of Peripheral Equipments".

7. Options

Battery For Absolute Encoder

Battery For Absolute Encoder

Part No. DVOP2990

- Lithium battery: 3.6V 2000mAh

This battery is categorized as hazardous substance, and you may be required to present an application of hazardous substance when you transport by air (both passenger and cargo airlines).

Battery Box For Absolute Encoder

Part No. DV0P4430

- Components

Part No.	DV0PM20028		Frame symbol of applicable driver	B-frame	Mounting screw		M4 \times L6 Pan head 4pcs		

Part No.	DV0PM20029		Frame symbol of applicable driver	C-frame	Mounting screw		M4 \times L6 Pan head 4pcs			
$\begin{aligned} & \stackrel{0}{3} \\ & \stackrel{3}{3} \\ & \stackrel{0}{\omega} \\ & \stackrel{\omega}{0} \\ & \stackrel{0}{6} \end{aligned}$								4, Pan head	$\neg \stackrel{\stackrel{n}{\\|}}{⿻}$	

Caution… For E, F and G-frame, you con make a front end and back end mounting by changing the mounting direction of L-shape bracket (attachment).
Related page ...?: P.7-73... "Dimensions of driver"

7. Options

Supplement

Reactor

Fig. 1

F: Center-to-center distanc ϵ on outer circular arc

Fig. 2

	Part No.	A	B	C	D	$E_{(\text {Max }}$	F	G	H	I	Inductance (mH)	Rated current (A)
Fig. 1	DV0P220	65 ± 1	125 ± 1	(93)	136Max	155	70+3/-0	85 ± 2	$4-7 \phi \times 12$	M4	6.81	3
	DV0P221	60 ± 1	150 ± 1	(113)	155Max	130	60+3/-0	75 ± 2	$4-7 \phi \times 12$	M4	4.02	5
	DV0P222	60 ± 1	150 ± 1	(113)	155Max	140	70+3/-0	85 ± 2	$4-7 \phi \times 12$	M4	2	8
	DV0P223	60 ± 1	150 ± 1	(113)	155Max	150	79+3/-0	95 ± 2	$4-7 \phi \times 12$	M4	1.39	11
	DV0P224	60 ± 1	150 ± 1	(113)	160Max	155	84+3/-0	100 ± 2	$4-7 \phi \times 12$	M5	0.848	16
	DV0P225	60 ± 1	150 ± 1	(113)	160Max	170	100+3/-0	115 ± 2	$4-7 \phi \times 12$	M5	0.557	25
Fig. 2	DV0P227	55 ± 0.7	80 ± 1	66.5 ± 1	110max	90	41 ± 2	55 ± 2	$4-5 \phi \times 10$	M4	4.02	5
	DV0P228	55 ± 0.7	80 ± 1	66.5 ± 1	110Max	95	46 ± 2	60 ± 2	$4-5 \phi \times 10$	M4	2	8
	DV0PM20047	55 ± 0.7	80 ± 1	66.5 ± 1	110Max	105	56 ± 2	70 ± 2	$4-5 \phi \times 10$	M4	1.39	11

Motor series	Power supply	Rated output	Part No.	Motor series	Power supply	Rated output	Part No.
MSME	Single phase, 100V	50W to 100W	DVOP227	MSME	3-phase, 200V	2.0 kW	DV0P223
		200W to 400W	DVOP228	MDME			
MSME	Single phase, 200 V	50 W to 200W	DVOP227	MHME			
		400W to 750W	DVOP228	MGME			
MSME MDME MHME	Single phase, 200 V	1.0 kW	DVOP228	MSME		3.0 kW	DVOP224
		1.5 kW	DVOPM20047	MDME			
MGME	Single phase, 200 V	0.9kW	DVOP228	MHME			
MSME	3-phase, 200V	50W to 750W	DVOP220	MGME			
MGME		0.9 kW	DVOP221	MSME		4.0kW	DV0P225
MSME		$\begin{aligned} & 1.0 \mathrm{~kW} \\ & 1.5 \mathrm{~kW} \end{aligned}$	DVOP222	MDME			
MDME				MHME			
MHME							
MFME	Single phase, 200V	1.5kW	DVOPM20047				
	3-phase, 200V	1.5kW	DVOP222				
		2.5 kW	DVOP224				

Harmonic restraint

Harmonic restraint measures are not common to all countries. Therefore, prepare the measures that meet the requirements of the destination country.
With products for Japan, on September, 1994, "Guidelines for harmonic restraint on heavy consumers who receive power through high voltage system or extra high voltage system" and "Guidelines for harmonic restraint on household electrical appliances and general-purpose articles" established by the Agency for Natural Resources and Energy of the Ministry of Economy, Trade and Industry (the ex-Ministry of International Trade and Industry). According to those guidelines, the Japan Electrical Manufacturers' Association (JEMA) have prepared technical documents (procedure to execute harmonic restraint: JEM-TR 198, JEM-TR 199 and JEM-TR 201) and have been requesting the users to understand the restraint and to cooperate with us. On January, 2004, it has been decided to exclude the general-purpose inverter and servo driver from the "Guidelines for harmonic restraint on household electrical appliances and general-purpose articles". After that, the "Guidelines for harmonic restraint on household electrical appliances and generalpurpose articles" was abolished on September 6, 2004.
We are pleased to inform you that the procedure to execute the harmonic restraint on general-purpose inverter and servo driver was modified as follows.

1. All types of the general-purpose inverters and servo drivers used by specific users are under the control of the "Guidelines for harmonic restraint on heavy consumers who receive power through high voltage system or extra high voltage system". The users who are required to apply the guidelines must calculate the equivalent capacity and harmonic current according to the guidelines and must take appropriate countermeasures if the harmonic current exceeds a limit value specified in a contract demand. (Refer to JEM-TR 210 and JEM-TR 225.)
2. The "Guidelines for harmonic restraint on household electrical appliances and generalpurpose articles" was abolished on September 6, 2004. However, based on conventional guidelines, JEMA applies the technical documents JEM-TR 226 and JEM-TR 227 to any users who do not fit into the "Guidelines for harmonic restraint on heavy consumers who receive power through high voltage system or extra high voltage system" from a perspective on enlightenment on general harmonic restraint. The purpose of these guidelines is the execution of harmonic restraint at every device by a user as usual to the utmost extent.

7. Options

Supplement
External Regenerative Resistor

Part No.	Manufacturer's part No.	Specifications					Activation temperature of built-in thermostat
		Resistance	cable core outside diameter	Mass	Rated power (reference)		
					Free air	with fan	
		Ω	mm	kg	W	W	
DVOP4280	RF70M	50	$\left.\begin{array}{c} \phi 1.27 \\ \left(\begin{array}{c} \text { AWG18 } \\ \text { stranded } \\ \text { wire } \end{array}\right. \end{array}\right)$	0.1	10	25	$140 \pm 5^{\circ} \mathrm{C}$ B-contact Open/Close capacity (resistance load) 1A 125VAC 6000 times 0.5A 250VAC 10000 times
DV0P4281	RF70M	100		0.1	10	25	
DVOP4282	RF180B	25		0.4	17	50	
DVOP4283	RF180B	50		0.2	17	50	
DV0P4284	RF240	30		0.5	40	100	
DV0P4285	RH450F	20		1.2	52	130	
DVOPM20048	RF240	120		0.5	35	80	
DVOPM20049	RH450F	80		1.2	65	190	
DVOPM20058	$\mathrm{RH} 450 \mathrm{~F} \times 6$	3.3	- *2	16	- *3	780	
DV0PM20059	RH450F $\times 6$	13.3	- *2	16	$-{ }^{*}$	1140	

Manufacturer : Iwaki Musen Kenkyusho
*1 Power with which the driver can be used without activating the built-in thermostat.
A built-in thermal fuse and a thermal protector are provided for safety.
The circuit should be so designed that the power supply will be turned off as the thermal protector operates.
The built-in thermal fuse blows depending on changes in heat dissipation condition, operating temperature limit, power supply voltage or load.
Mount the regenerative resistor on a machine operating under aggressive regenerating condition (high power supply voltage, large load inertia, shorter deceleration time, etc.) and make sure that the surface temperature will not exceed $100^{\circ} \mathrm{C}$.
Attach the regenerative resistor to a nonflammable material such as metal.
Cover the regenerative resistor with a nonflammable material so that it cannot be directly touched.
Temperatures of parts that may be directly touched by people should be kept below $70^{\circ} \mathrm{C}$.
*2 Terminal block with screw tightening torque as shown below.

$$
\begin{aligned}
& \mathrm{T} 1, \mathrm{~T} 2,24 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{E}: \mathrm{M} 4: 1.2 \text { to } 1.4 \mathrm{~N} \cdot \mathrm{~m} \\
& \mathrm{R} 1, \mathrm{R} 2:
\end{aligned}: \mathrm{M} 5: 2.0 \text { to } 2.4 \mathrm{~N} \cdot \mathrm{~m} \mathrm{l}
$$

Use the cable with the same diameter as the main circuit cable. (Refer to P.2-10).
*3 With built-in fan which should always be operated with the power supply connected across 24 V and 0 V .

Frame	Power supply		
	Single phase, 100V	Single phase, 200V 3-phase, 200V	3-phase, 400V
	DVOP4280	DVOP4281 $(50 W, 100 W)$ DVOP4283 $(200 W)$	
B	DVOP4283	DVOP4283	

DV0P4280, DV0P4281

DV0P4282, DV0P4283

DV0P4284, DV0PM20048

DV0P4285, DV0PM20049

DVOPM20058, DVOPM20059

R=20』(DVOPM20058) R=80 Ω (DVOPM20059)
Circuit diagram

Remarks $\cdots \%$ Thermal fuse is installed for safety. Compose the circuit so that the power will be turned off when the thermostat is activated. The thermal fuse may blow due to heat dissipating condition, working temperature, supply voltage or load fluctuation.
Make it sure that the surface temperature of the resistor may not exceed $100^{\circ} \mathrm{C}$ at the worst running conditions with the machine, which brings large regeneration (such case as high supply voltage, load inertia is large or deceleration time is short) Install a fan for a forced cooling if necessary.

Caution $\cdots:$ Regenerative resistor gets very hot.
Take preventive measures for fire and burns.
Avoid the installation near inflammable objects, and easily accessible place by hand.

Surge absorber for motor brake

Motor		Part No.	Manufacturer
MSME	50W to 750W (200V)	Z15D271	Ishizuka Electronics Co.
	$\begin{gathered} 750 \mathrm{~W}(400 \mathrm{~V}) \\ 1.0 \mathrm{~kW} \text { to } 5.0 \mathrm{~kW} \end{gathered}$	Z15D151	
MDME	$\begin{aligned} & 400 \mathrm{~W}(400 \mathrm{~V}) \\ & 600 \mathrm{~W}(400 \mathrm{~V}) \end{aligned}$		
	1.0 kW to 3.0kW	NVD07SCD082	KOA CORPORATION
	4.0kW to 7.5 kW	Z15D151	Ishizuka Electronics Co.
	$11 \mathrm{~kW}, 15 \mathrm{~kW}$	NVD07SCD082	KOA CORPORATION
MFME	1.5 kW		
	$2.5 \mathrm{~kW}, 4.5 \mathrm{~kW}$		
MGME	0.9 kW to 6.0 kW	Z15D151	Ishizuka Electronics Co.
MHME	$1.0 \mathrm{~kW}, 1.5 \mathrm{~kW}$	NVD07SCD082	KOA CORPORATION
	2.0kW to 7.5 kW	Z15D151	Ishizuka Electronics Co.

Manufacturer	Tel No. / Home Page	Peripheral components
Automation Controls Company Panasonic Electric Works, Co.,Ltd	81-6-6908-1131 http://panasonic-denko.co.jp/ac	Circuit breaker Surge absorber
Iwaki Musen Kenkyusho Co., Ltd.	$81-44-833-4311$ http://www.iwakimusen.co.jp/	Regenerative resistor
Ishizuka Electronics Corp.	81-3-3621-2703 http://www.semitec.co.jp/	Surge absorber for holding brake
KOA CORPORATION	81-42-336-5300 http://www.koanet.co.jp/	
TDK Corp.	81-3-5201-7229 http://www.tdk.co.jp/	Noise filter for signal lines
MICROMETALS (Nisshin Electric Co., Ltd.)	81-4-2934-4151 http://www.nisshin-electric.com/	
KK-CORP.CO.JP	81-184-53-2307 http://www.kk-corp.co.jp/	
Okaya Electric Industries Co. Ltd.	81-3-4544-7040 http://www.okayatec.co.jp/	Surge absorber Noise filter
Japan Aviation Electronics Industry, Ltd.	81-3-3780-2717 http://www.jae.co.jp	Connector
Sumitomo 3M	81-3-5716-7290 http://www.mmmco.jp	
Tyco Electronics	$81-44-844-8052$ http://www.tycoelectronics.com/ japan/	
Japan Molex Inc.	81-462-65-2313 http://www.molex.co.jp	
J.S.T. Mfg. Co., Ltd.	```81-45-543-1271 http://www.jst-mfg.com/index_i. html```	
Daiden Co., Ltd.	81-3-5805-5880 http://www.dyden.co.jp/	Cable
Mitutoyo Corp.	81-44-813-8236 http://www.mitutoyo.co.jp	External scale
Magnescale Co., Ltd.	81-463-92-7973 http://www.mgscale.com	
Schaffner EMC, Inc.	$81-3-5712-3650$ http://www.schaffner.jp/	Noise filter

Warranty

Warranty period

- The warranty period is one year from the date of purchase or 18 months from the month of manufacture in our plant.
For a motor with brake, the axis accelerated and decelerated more times than the specified limit is not covered by warranty.

Warranty information

- Should any defect develop during warranty period under standard service conditions as described in the manual, the company agrees to make repairs free of charge. Even during warranty period, the company makes fee-based repair on product containing:
[1] Failure or damage due to misuse, improper repair or alteration.
[2] Failure or damage due to falling, or damage during transportation, after the original delivery
[3] Defects resulting from neglect of the specification in use of the product.
[4] Failure or damage due to unregulated voltage and fire, and act of natural disasters such as earthquake, lightning, wind, flood and salt pollution.
[5] Defects resulting from invasion of foreign materials such as water, oil and metal pieces.
Parts exceeding their standard lifetime specified in this document are excluded.
- The company shall not be liable for any indirect, incidental or consequential damage or loss of any nature that may arise in connection with the product.

Cautions for Proper Use

- Practical considerations for exporting the product or assembly containing the product When the end user of the product or end use of the product is associated with military affair or weapon, its export may be controlled by the Foreign Exchange and Foreign Trade Control Law. Complete review of the product to be exported and export formalities should be practiced.
- This product is intended to be used with a general industrial product, but not designed or manufactured to be used in a machine or system that may cause personal death when it is failed.
- Installation, wiring, operation, maintenance, etc., of the equipment should be done by qualified and experienced personnel.
- Apply adequate tightening torque to the product mounting screw by taking into consideration strength of the screw and the characteristics of material to which the product is installed. Overtightening can damage the screw and/or material; undertightening can result in loosening.
Example) Steel screw into steel section:

M4	1.35 to $1.65 \mathrm{~N} \cdot \mathrm{~m}$.
M5	2.7 to $3.3 \mathrm{~N} \cdot \mathrm{~m}$.
M6	4.68 to $5.72 \mathrm{~N} \cdot \mathrm{~m}$.
M8	11.25 to $13.75 \mathrm{~N} \cdot \mathrm{~m}$.
M10	22.05 to $26.95 \mathrm{~N} \cdot \mathrm{~m}$.
M11	37.8 to $46.2 \mathrm{~N} \cdot \mathrm{~m}$.

- Install a safety equipments or apparatus in your application, when a serious accident or loss of property is expected due to the failure of this product.
- Consult us if the application of this product is under such special conditions and environments as nuclear energy control, aerospace, transportation, medical equipment, various safety equipments or equipments which require a lesser air contamination.
- We have been making the best effort to ensure the highest quality of the products, however, application of exceptionally larger external noise disturbance and static electricity, or failure in input power, wiring and components may result in unexpected action. It is highly recommended that you make a fail-safe design and secure the safety in the operative range.
- If the motor shaft is not electrically grounded, it may cause an electrolytic corrosion to the bearing, depending on the condition of the machine and its mounting environment, and may result in the bearing noise. Checking and verification by customer is required.
- Failure of this product depending on its content, may generate smoke of about one cigarette. Take this into consideration when the application of the machine is clean room related.
- Please be careful when using in an environment with high concentrations of sulfur or sulfric gases, as sulfuration can lead to disconnection from the chip resistor or a poor contact connection.
- Take care to avoid inputting a supply voltage which significantly exceeds the rated range to the power supply of this product. Failure to heed this caution may result in damage to the internal parts, causing smoking and/or a fire and other trouble.
- The user is responsible for matching between machine and components in terms of configuration, dimensions, life expectancy, characteristics, when installing the machine or changing specification of the machine. The user is also responsible for complying with applicable laws and regulations.
- The product will not be guaranteed when it is used outside its specification limits.
- Parts are subject to minor change to improve performance.

After-Sale Service (Repair)

Repair

Consult to a dealer from whom you have purchased the product for details of repair. When the product is incorporated to the machine or equipment you have purchased, consult to the manufacturer or the dealer of the machine or equipment.

Technical information

Technical information of this product (Operating Instructions, CAD data) can be downloaded from the following web site.
http://industrial.panasonic.com/ww/i_e/25000/motor_fa_e/motor_fa_e.html

Panasonic Corporation, Motor Business Unit, Industrial Sales Group

Tokyo: Kyobashi MID Bldg, 2-13-10 Kyobashi, Chuo-ku, Tokyo 104-0031
TEL +81-3-3538-2961
FAX +81-3-3538-2964
Osaka: 1-1, Morofuku 7-chome, Daito, Osaka 574-0044
TEL +81-72-870-3065
FAX +81-72-870-3151

For your records:
The model number and serial number of this product can be found on either the back or the bottom of the unit. Please note them in the space provided and keep for future reference.

Panasonic Corporation, Motor Business Unit

7-1-1 Morofuku, Daito, Osaka, 574-0044, Japan Phone : +81-72-871-1212
© Panasonic Corporation 2009

[^0]: Related page ...?: •P.1-23 "Check of the Combination of the Driver and the Motor"

[^1]: Caution …
 *1 The specification out of Japan.
 *2 Air containing water vapor will become saturated with water vapor as the temperature falls, causing dew.
 Related page ...: • P.1-28 "Installation of Driver" • P.1-32 "Installation of Motor"

[^2]: Note • \because Suffix of " \square " in the applicable motor model represents design order.

 - Suffix of " * " in the applicable motor model represents the motor structure.

[^3]: Note \cdots. Suffix of " \square " in the applicable motor model represents design order.

[^4]: Caution $\cdots:$. Motor cable (for MHME 7.5kW, MGME 6.0kW, MDME 7.5 kW to 15.0 kW) is not prepared in option.

[^5]: Related page $\cdots:$

 - P.1-27 "Junction cable for motor" • P.1-28 "Installation of driver"
 - P.1-35 "Permissible Load at Output Shaft" • P.7-79 "Dimensions"

[^6]: Note
 The wiring indicated with the broken line shall be provided only when required.
 Related page $\cdot \cdots \cdot:$
 -P.2-48 "Specifications of Motor connector" •P.2-50 "Wiring method to connector"
 -P.7-111, 112 "Connector kit for XA" •P.7-113 "Connector kit for XB"

[^7]: Note ...the figure above shows connections on velocity, position, torque and full-closed mode driver.

 - Only for position control type is not provided with X2, X3 and X5.

 Related page ...?: P.2-18 "Wiring of the Main Circuit (E-frame, 200 V type)" • P.2-48 "Specifications of Motor connector"
 URL: http://industrial.panasonic.com/jp/i/fa_motor.html

[^8]: Note The wiring indicated with the broken line shall be provided only when required.
 Related page $\cdots \cdots$

 - P.2-48 "Specifications of Motor connector" • P.2-50 "Wiring method to connector"
 - P.7-112 "Connector kit for XA" • P.7-113 "Connector kit for XB, XC"

[^9]: Note This overall wiring diagram is a typical one. The pages that follow show wiring for specific application. The wiring indicated with the broken line shall be provided only when required.
 Related page $\cdots ?$

 - P.7-94... "Options"

[^10]: Note
 Related page $\cdots \cdot:$ P.2-48 "Specifications of Motor connector"

[^11]: Note
 This overall wiring diagram is a typical one. The pages that follow show wiring for specific application. The wiring indicated with the broken line shall be provided only when required.
 Related page ...i:

 - P.7-94... "Options"

[^12]: Note \ldots The wiring indicated with the broken line shall be provided only when required.
 Related page ...: - P.2-48 "Specifications of Motor connector"

[^13]: Note
 The wiring indicated with the broken line shall be provided only when required.
 Related page $\cdots:$ - P.2-48 "Specifications of Motor connector"

[^14]: Related page $\ldots \therefore \cdot$
 -P.7-94... "Options"

[^15]: Note
 Related page $\cdots:$

 - P.2-48 "Specifications of Motor connector" • P.2-50 "Wiring method to connector"
 -P.7-111, 112 "Connector kit for XA" • P.7-113 "Connector kit for XB, XC" • P.7-112 "Connector kit for XD"

[^16]: Related page $\ldots \therefore \cdot$
 -P.7-94... "Options"

[^17]: Note \ldots The wiring indicated with the broken line shall be provided only when required.
 Related page \cdots • P.2-48 "Specifications of Motor connector"

[^18]: Note
 This overall wiring diagram is a typical one. The pages that follow show wiring for specific application. The wiring indicated with the broken line shall be provided only when required.
 Related page ...:\% • P.7-94... "Options"

[^19]: Note
 Related page $\cdots \div$

 - P.2-48 "Specifications of Motor connector"

[^20]: Note \ldots The wiring indicated with the broken line shall be provided only when required.
 Related page $\cdots \cdot$ • P.2-48 "Specifications of Motor connector"

[^21]: - X1 to X7 are used for the secondary circuit. To connect these terminals to the primary power supply (particularly, the 24 VDC power supply for control, the 24 VDC power supply for brake, and the 24 VDC power supply for regenerative resistor [H -frame only]), insulation is required. Do not connect these terminals to the same power supply.
 - Only for position control type is not provided with X2.
 - P.7-110 "Connector Kit for Communication Cable (for RS485, RS232)"

[^22]: Remarks \cdots;

 - X1 to X7 are used for the secondary circuit. To connect these terminals to the primary power supply (particularly, the 24 VDC power supply for control, the 24 VDC power supply for brake, and the 24 VDC power supply for regenerative resistor [H-frame only]), insulation is required. Do not connect these terminals to the same power supply.

[^23]: - P.3-38 "Inputs and outputs on connector X4"
 - P.4-44... "Details of Parameter"
 - P.6-5 "Protective Function"

[^24]: Related page $\cdots:$

 - For wiring details, refer to P2-12 "Overall Wiring".
 - P.4-6 "Pr0.04"
 -P.4-13 "Pr1.01 to 1.04"

[^25]: Note
 Related page $\cdots:$
 Only for position control type is not provided with connector X5.

 - P.3-17 "Control Block Diagram" • P.3-19 "Wiring Diagram to the connector, X4"
 - P.3-30 "Inputs and outputs on connector X4" •P.4-31 "Details of parameter"

[^26]: Note ... The functions of the following pin can be changed using parameters. (Refer to P.4-33) Input(Position): 8, 9, 26, 27, 28, 29, 31, 32 Output: 10-11, 12, 34-35, 36-37, 38-39, 40 Input(Velocity): 8, 9, 26, 27, 28, 29, 30, 31, 32, 33 Output: 10-11, 12, 34-35, 36-37, 38-39, 40

 * Pins in the figure above represent default parameter values.
 - Only for position control type is not provided with analog input.

 Caution ...8- With position control only type, do not connect analog input on pins 14, 16 and 18 to SG of pin 15.

[^27]: Note I represents twisted pair wire.
 Related page $\cdots \cdots:$ - P.3-30 "Inputs and outputs on connector X4"

[^28]: Related page $\cdots:$: P.3-30 "Inputs and outputs on connector X4"

 - P.4-4 "Details of parameter"

[^29]: Related page $\cdots \cdot:$ •P.4-43, 47 "Details of Parameter"

[^30]: Note . A parameter is designated as follows: Class PrO. 00 Parameter No.
 -For parameters which No. have a suffix of "*", changed contents will be validated when you turn on the control power.
 Related page ...?

 - P.3-30... "Inputs and outputs on connector X4"

[^31]: Related page ..

 - P.4-63... "Setup of Motor Rotational Speed and Input Pulse Frequency"
 - P.6-7, P.6-8... "Protective function (Detail of error code)"

[^32]: Note ... A parameter is designated as follows: Class Pro. 00 Parameter No.

 - For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page ...:
 - P.2-12... "System Configuration and Wiring" • P.3-30... "Inputs and outputs on connector X4"

[^33]: Caution...s

 - To Panasonic MINAS users: A4 and higher series CAUTION: Parameter settings shown in this manual may differ from those applied to your product (s).
 Note •For parameters which No. have a suffix of "*", changed contents will be validated when you turn on the control power.

[^34]: Note

 - A parameter is designated as follows: Class Pro. 00 Parameter No.
 - For parameters which No. have a suffix of "*", changed contents will be validated when you turn on the control power.
 Related page $\cdots \div$
 - P.3-30... "Inputs and outputs on connector X4"

[^35]: Related page $\cdots: \cdot$ For switching condition of the 1st and the 2nd, refer to P.5-17 "Gain Switching Function" of Adjustment.

[^36]: Note . A parameter is designated as follows: Class PrO. 00 Parameter No.
 -For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page $\cdots:$

 - P.3-30... "Inputs and outputs on connector X4"

[^37]: Note . A parameter is designated as follows: Class Pro. 00 Parameter No.
 -For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page $\ldots \div$ - P.3-30... "Inputs and outputs on connector X4"

[^38]: Note

 - A parameter is designated as follows: Class PrO.00 Parameter No.
 - For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page $\cdots \div$
 - P.3-30... "Inputs and outputs on connector X4"

[^39]: Note

 - A parameter is designated as follows: Class PrO. 00 Parameter No.
 -For parameters which No. have a suffix of "*", changed contents will be validated when you turn on the control power.
 Related page $\cdots:$: P. 3-30... "Inputs and outputs on connector X4"

[^40]: Caution \cdots. Higher the setup, larger the notch width you can obtain. Use with default setup in normal operation.

[^41]: Note - A parameter is designated as follows: Class Pro. 00 Parameter No.

 - For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page $\ldots \div$ - P.3-30... "Inputs and outputs on connector X4"

[^42]: Note - A parameter is designated as follows: Class PrO.00 Parameter No.

 - For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page $\cdots \div \cdot$ - P.3-30... "Inputs and outputs on connector X4"

[^43]: Note . A parameter is designated as follows: Class PrO.00 Parameter No.
 -For parameters which No. have a suffix of "*", changed contents will be validated when you turn on the control power.
 Related page \ldots :

 - P.3-30... "Inputs and outputs on connector X4"

[^44]: Note . A parameter is designated as follows: Class Pro. 00 Parameter No.

 - For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page $\cdots ?$
 - P.3-30... "Inputs and outputs on connector X4"

[^45]: Note • A parameter is designated as follows: Class PrO. 00 Parameter No.

 - For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page $\ldots:$: P. 3-30... "Inputs and outputs on connector X4"

[^46]: Note

 - A parameter is designated as follows: Class PrO. 00 Parameter No.
 - For parameters which No. have a suffix of "*", changed contents will be validated when you turn on the control power.
 Related page $\ldots \div$
 - P.3-30 ... "Inputs and outputs on connector X4"

[^47]: Note - A parameter is designated as follows: Class Pro. 00 Parameter No.
 -For parameters which No. have a suffix of "*", changed contents will be validated when you turn on the control power.
 Related page $\ldots \div$ - P.3-30... "Inputs and outputs on connector X4"

[^48]: Note ... A parameter is designated as follows: Class Pro.00 Parameter No.
 -For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page $\cdots \div$

 - P.3-30... "Inputs and outputs on connector X4"

[^49]: Note . A parameter is designated as follows: Class PrO. 00 Parameter No.

 - For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page $\cdots \div$ - P.3-30... "Inputs and outputs on connector X4"

[^50]: Note - A parameter is designated as follows: Class Pro. 00 Parameter No.

 - For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page $\ldots:$: P. 3-30... "Inputs and outputs on connector X4"

[^51]: Note - A parameter is designated as follows: Class Pro. 00 Parameter No.
 -For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page ...: - P.3-30 ... "Inputs and outputs on connector X4" - P.6-2 "Protective Function"

[^52]: Note ... A parameter is designated as follows: Class Pro. 00 Parameter No.

 - For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page $\cdots \cdots$:
 - P.3-30... "Inputs and outputs on connector X4" • P.6-2 "Protective Function"

[^53]: Note - A parameter is designated as follows: Class Pro. 00 Parameter No.

 - For parameters which No. have a suffix of "*", changed contents will be validated when you turn on the control power.
 Related page -..? •P.3-30... "Inputs and outputs on connector X4"

[^54]: Note

 - A parameter is designated as follows: Class PrO. 00 Parameter No.
 - For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page $\cdots \div$
 - P.3-30... "Inputs and outputs on connector X4" • P.6-2 "Protective Function"

[^55]: Note ... A parameter is designated as follows: Class Pro. 00 Parameter No.
 -For parameters which No. have a suffix of "*", changed contents will be validated when you turn on the control power.
 Related page $\ldots \div$ - P.3-30... "Inputs and outputs on connector X4"

[^56]: Note - A parameter is designated as follows: Class Pro. 00 Parameter No.

 - For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page ...?
 - P.2-107 "EEPROM Writing Mode" • P.3-30... "Inputs and outputs on connector X4"

[^57]: Note A parameter is designated as follows: Class Pro. 00 Parameter No.

 - For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page $\ldots \div \cdot$ - P.3-30... "Inputs and outputs on connector X4"

[^58]: Note ... A parameter is designated as follows: Class PrO.00 Parameter No.

 - For parameters which No. have a suffix of " *", changed contents will be validated when you turn on the control power.
 Related page ...:
 - P.3-30... "Inputs and outputs on connector X4"

[^59]: - Only for position control type is not provided with analog input.

[^60]: Related page ...? • P.4-6 "Pr0.04" •P.4-13... "Pr1.00..." • P.4-53 "Pr6.07..."

[^61]: Related page ...:

[^62]: Related page ...: • P.4-5... "Details of parameter" • P.3-14... "Control Block Diagram"

[^63]: Note

 - Only for position control type is not provided with X5 (For external scale connector).

 Related page $\cdots \div$

 - P.3-30 "Inputs and outputs on connector X4" • P.6-2 "Protective Function"

[^64]: Related page ...:* • P.4-6... "Details of parameter"

[^65]: Related page $\cdots:$

[^66]: Related page $\cdots \div$

[^67]: Related page ...:

[^68]: Related page ...? • P.4-53 "Details of parameter"

[^69]: Related page ...: • P.4-58 "Details of parameter"

[^70]: Note \cdots •The figure above shows connections on velocity, position, torque and full-closed mode driver.

 - Only for position control type is not provided with X2 X3 and X5.

 Related page ...: • P.2-86 ... "How to Use the Front Panel" • P.3-30 "Inputs and outputs on connector X4"

 - P.7-26 "Outline of Setup support software "PANATERM"

[^71]: Related page $\cdots:$

 - P.2-91 ... "How to Use the Front Panel" • P.3-30 "Inputs and outputs on connector X4"
 - P.4-4... "Details of parameter"

[^72]: Related page ...?

 - P.4-4 "Details of parameter" •P.3-30 "Inputs and outputs on connector X4"
 - P.7-26 "Outline of Setup support software "PANATERM"

[^73]: Related page ...? • P.4-8... "Details of parameter" • P.7-26 "Outline of Setup support software "PANATERM"

[^74]: Note

 - Only for position control type is not provided with X3 (Safety function connector).

 Related page $\cdots:$
 -P.2-2 "Conformance to international standards" • P.2-96 "How to Use the Front Panel"

 - P.3-30 "Inputs and outputs on connector X4"

[^75]: - Only for position control type is not provided with X2 (Communication connector).
 - Only for position control type does not support the 17-bit absolute specification. It supports only 20 -bit incremental specification

[^76]: Note ... * Battery for absolute encoder is required to store the multi-turn data into the encoder. Connect the battery between BAT+ and BAT- of the motor.

 - Only for position control type is not provided with X2 (Communication connector).
 - Only for position control type does not support the 17-bit absolute specification. It supports only 20-bit incremental specification.

[^77]: - Only for position control type does not support the 17-bit absolute specification. It supports only 20 -bit incremental specification.

[^78]: - Only for position control type is not provided with X2 (Communication connector).
 - Only for position control type does not support the 17-bit absolute specification. It supports only 20-bit incremental specification.
 - P.3-30 "Inputs and outputs on connector X4" • P.4-50 "Details of parameter"

[^79]: - Only for position control type is not provided with X2 (Communication connector) and X5 (Connector for External Scale).
 - Only for position control type does not support the 17-bit absolute specification. It supports only 20-bit incremental specification.

[^80]: Note ...\% Only for position control type does not support the 17-bit absolute specification. It supports only 20-bit incremental specification.

 - P.7-26 "Outline of Setup Support Software, "PANATERM""

[^81]: Note ... Only for position control type is not provided with X2 (Communication connector) and X5 (Connector for External Scale).

 - Only for position control type does not support the 17-bit absolute specification. It supports only 20-bit incremental specification.

[^82]: - Until this command completes, previously set up protocol parameter will be processed.

 After this command has been executed, this parameter setup will be valid from the next command.

 - RTY is 4-bit.
 -Unit... T1: 0.1s, T2 : 0.1s, T6 : 1ms

[^83]: * These are subject to change. Contact us when you use these values for your machine design.
 * Ratio to the rated torque at ambient temperature of $40^{\circ} \mathrm{C}$ is 100% in case of without oil seal, without brake.

[^84]: * These are subject to change. Contact us when you use these values for your machine design.

[^85]: * These are subject to change. Contact us when you use these values for your machine design.

[^86]: * These are subject to change. Contact us when you use these values for your machine design.
 * Ratio to the rated torque at ambient temperature of $40^{\circ} \mathrm{C}$ is 100% in case of without oil seal, without brake.

[^87]: * These are subject to change. Contact us when you use these values for your machine design.

[^88]: * These are subject to change. Contact us when you use these values for your machine design.

[^89]: * These are subject to change. Contact us when you use these values for your machine design.

[^90]: * These are subject to change. Contact us when you use these values for your machine design.

[^91]: * These are subject to change. Contact us when you use these values for your machine design.

[^92]: Related page ...:. - P.1-21 "Check of the Model" • P.1-23 "Check of the Combination of the Driver and the Motor"

 - P.7-58 to 60 "S-T Characteristics"

[^93]: Related page $\cdots \cdot:$ •P.1-21 "Check of the Model" • P.1-23 "Check of the Combination of the Driver and the Motor" - P.7-60, 7-62 "S-T Characteristics"

[^94]: Related page ...: •P.1-21"Check of the Model" • P.1-23 "Check of the Combination of the Driver and the Motor"

[^95]: Caution \cdots Reduce the moment of inertia ratio if high speed response operation is required.
 Related page ...: •P.1-21 "Check of the Model" • P.1-23 "Check of the Combination of the Driver and the Motor" - P.7-67 "S-T Characteristics"

[^96]: Related page ...: • P.1-21 "Check of the Model" • P.1-23 "Check of the Combination of the Driver and the Motor" - P.7-68 "S-T Characteristics"

[^97]: Related page: P.1-21"Check of the Model" • P.1-23 "Check of the Combination of the Driver and the Motor"
 -P.7-71, 7-72 "S-T Characteristics"

[^98]: *1 Old model number: 55100-0670 (Japan Molex Inc.)

