Panasonic

OVERVIEW

AC SERVO DRIVES \& MOTION CONTROL

MINAS A5 series servo drives

Highly dynamic servo drives with state-of-the-art technology. Large power range ($50 \mathrm{~W}-15 \mathrm{~kW}$) combined with a lightweight and compact design. Innovative functions to suppress resonance frequencies and vibrations. Multiple control features such as pulse, analog, and network technology in real-time communication (100Mbit/s).

Motion control libraries, configuration and programming software
PLC programming software Control FPWIN Pro (compliant with IEC 61131-3). The free configuration software PANATERM and Mselect3 support users in the system setup, thus shortening the time required for commissioning. In addition, you can download motion control libraries for free. With the libraries' predefined function blocks, it is easy to solve even complex positioning tasks.

FP series PLC

The PLC comes already equipped with the hardware required for positioning tasks. FPOR, FPE (Sigma), and FPX are capable of controlling up to 4 axes independently. By using positioning units, the system can be expanded to control up to 10 axes. Add network technology in the shape of RTEX or EtherCAT positioning units, and the FP series allows you to control up to 256 axes with the real-time Ethernet bus.

GT and HM500 series touch terminals
Touch terminals allow humans and machines to interact with each other. The machine's role therein is to display data, results, messages, etc. and to receive instructions and execute tasks assigned by people. Panasonic's new touch terminals are ideally suited for these tasks. They are optimally suited both for factory and building automation. Panasonic HMIs cover a wide spectrum, ranging in size from a compact $3^{\prime \prime}$ touch panel to a color 13 " display for sophisticated applications.

Contents

Comprehensive MC solutions by Panasonic .. 2Accessories36-37
.3 Overview 3
Programmable controllers 38
Applications 4
Positioning functions. 39-43
MINAS A5 series 6-28
MINAS LIQI series 29-32
Cables. 33-35
Software 44-49
Memo 50
Other Panasonic products 51

MINAS series

MINAS series		L\|Q1	A5E	A5	A5N	A5B
Rated power		50-1,000W	50-5,000W	50-15,000W		
Supply voltage	up to 1500W	$1 \times 230 \mathrm{VAC}$	$1 \times / 3 \times 230 \mathrm{VAC}$			
	from 1000W	-	$3 \times 400 \mathrm{VAC}$			
Bandwidth (velocity response)		$1,000 \mathrm{~Hz}$	2000 Hz			
Rated rotational speed		1500-3000 (r/min)				
Max. rotational speed		2000-6000 (r/min)				
Rated torque		0.16-3.2Nm	$0.16-23.9 \mathrm{Nm}$	$0.16-99.5 \mathrm{Nm}$		
Peak torque		$0.48-9.5 \mathrm{Nm}$	$0.48-71.6 \mathrm{Nm}$	$0.48-224 \mathrm{Nm}$		
Control functions		Position control		Position, velocity, and torque control		
Degree of protection (motor)		IP65	IP67			
Control input		Pulse		Pulse, analog		

With its power range of 50 to $15,000 \mathrm{~W}$, Panasonic servo drives are ideally suited to solve both small (1 or 2 axes) and complex tasks (up to 256 axes) easily and quickly.

The following industries make use of servo drives: packaging, textile, plastics, wood, paper, metal and mounting, and processing.

Application examples:

Packaging machine

A complete solution with PLC, touch terminal, and servo drives from Panasonic. Our compact drives offer a great advantage over competitor's products for packaging machines (labeling, packing, etc.).

Cutting machine

The FP2SH PLC controls the positioning so that the machine can cut at high speed and with an accuracy of 10 micrometers.

X-Y table

Positioning XY axes to apply adhesive.
One FPE (Sigma) controls 2 servo drives as well as the ad-hesive-dispensing device according to the predefined profile.

Food processing machine

This solution from Panasonic includes an FPOR PLC, a GT32 touch terminal, a MINAS A5 driver, and a VFO inverter. To make burgers, the movement of three axes has to be precisely synchronized.

Connector type (100/200V: A to E frame)

MINAS A5 series

The MINAS A5 series: Panasonic's standard AC servo drives.
The highly dynamic servo drives can be controlled by pulses or analog signals.

- Ultrafast response frequency: 2 kHz bandwidth (velocity response)
- Pulse input and output with up to 4 MHz
- Real-time autotuning function during operation
- 4 notch filters: manual/automatic
- 4 damping filters: manual/automatic
- PANATERM V5.0: Free software for configuration and motion simulation
- Conforms to the following safety standards: EN954-1(CAT3), ISO13849-1(PLd), EN61508(SIL2), EN62061(SIL2), EN61800-5-2(STO), IEC61326-3-1
- Full-closed control

Rated power	Driver MINAS A5E 230V AC	Drivers MINAS A5; A5N; A5B 230 VAC	Drivers MINAS A5; A5N; A5B $3 \times 380 \mathrm{AC}$	Frame
50/100W	MADHT1505E	MADHT1505***	-	A
200W	MADHT1507E	MADHT1507***		
400W	MBDHT2510E	MBDHT2510***		B
750W	MCDHT3520E	MCDHT3520***		C
1kW	-	MDDHT5540***	MDDHT2412***	D
1.5kW			MDDHT3420***	
2kW		-	MEDHT4430***	E
3kW			MFDHT5440***	F
4/5kW			MFDHTA464***	
7.5kW			MGDHTB4A2***	G
11/15kW			MHDHTB4A2***	H

Ordering code for drivers

Frame		MAD H T		$\frac{505 \text { *, *, * }}{\substack{50,}}$			
		Max. current				Rated current	
Code	Type	Code	Type	Code	Type	Code	Type
MADH	A5 series, A frame	T1	10A	1	Single phase, 100V	05	5A
MBDH	A5 series, B frame	T2	15A	3	3 -phase, 200V	07	7,5A
MCDH	A5 series, C frame	T3	30A	4	3-phase, 400V	10	10A
MDDH	A5 series, D frame	T5	50A	5	Single/3-phase, 200V	20	20A
MEDH	A5 series, E frame	T7	70A			30	30A
MFDH	A5 series, F frame	TA	100A			40	40A
MGDH	A5 series, G frame	TB	150A			64	64A
MHDH	A5 series, H frame					90	90A
						A2	120A

MINAS A5 network series

Thanks to its high transmission speed and sampling rate, RTEX (Realtime Express), the fast, real-time Ethernet bus for automation, is particularly well suited for highly dynamic single and multiple axes positioning tasks. The communication between master and slaves happens in real-time.

EtherCAT (Ethernet for Control Automation Technology) offers similar excellent features like RTEX. However, EtherCAT is an open, standardized field bus that allows an open data exchange with all other EtherCAT motion controllers.

Ethercat. ${ }^{\sim}$

Features	MINAS A5N	MINAS A5B
Real-time communication 100Mbit/s	RTEX protocol	CAN over EtherCAT (CoE)
Supports position, velocity and torque control	\checkmark	\checkmark
Manual and automatic vibration suppression (adjustable in the driver)	\checkmark	\checkmark
Full control of	up to 32 axes	
Conforms to the following safety standards: EN954-1(CAT3), ISO13849-1 (PLd), EN61508(SIL2), EN62061(SIL2), EN61800-5-2(STO), IEC61326-3-1	\checkmark	up to 64 axes
Easy wiring using standard Ethernet cables (CAT5e, up to 100m between units)	\checkmark	\checkmark
Positioning units for	FP5 (Sigma), FP2SH and FP7	\checkmark

Easy mounting and reliable connections thanks to loop wiring

[^0]
External encoders for full-closed control

Using an external encoder ensures high-precision positioning.
For most applications, positioning with a motor encoder works fine. However, mechanical parts may cause slight deviations that the motor encoder cannot control. This is where an external encoder or a linear scale is needed. They help to compensate even small inaccuracies so that positioning practically always works correctly.

Real-time auto-gain tuning

If this function is activated, tuning is performed automatically upon completion of several operations. When the response frequency has been adjusted, simple tuning results in a change to a single parameter value. Fine-tuning can be carried out by activating the gain adjustment mode in the setup software. The automatic vibration suppression function minimizes damage to the equipment. Additional mode and stiffness parameters enable easy response frequency optimization for specific machine types such as vertical axis or high-friction, belt-driven machines.

Manual and automatic notch filters

Highly sensitive notch filters eliminate the need to monitor troublesome vibration frequencies. By automatically detecting vibration and defining a simple auto-gain setting, the MINAS A5's filters greatly reduce interference and vibration caused by equipment resonance. For depth adjustment, the A5 features a total of four notch filters, two of which share the auto setup. The setup frequency range for the filters is $50-50,000 \mathrm{~Hz}$.

Manual and automatic damping filters

Damping filters that can be set automatically suppress the equipment's resonance and the natural vibration frequency component of the command input, which greatly reduces axis vibration at machine stoppage. The number of damping filters has been increased to four from the conventional two; of these four, two are for simultaneous use. The available frequency range has been extended significantly from 1 to 200 Hz .

Low cogging torque

Compared to competitor products, the MINAS A5 achieves the industry's most stable speed and lowest cogging torque by minimizing pulse width. This was made possible by a new design featuring a 10-pole rotor for the motor as well as magnetic field analysis. With the reduction in torque variation, the MINAS A5's speed, stability and positioning behavior have been markedly improved.

Software tool PANATERM with motion simulation

PANATERM reads response frequency data from the actual machine. A simplified simulation function allows you to check gain and filter effects without adjusting the actual equipment.

3-step control setting

Control parameters are activated according to the operating condition (deceleration during operation, stopping during fast positioning, standstill). By controlling the motion it is possible to perform even faster positioning with less vibration.

Integrated safety function (STO)

To insulate the motor power, MINAS A5 servo drivers feature independent, hardware-based, redundant circuits. Magnetic breakers prescribed for machines by the Low-Voltage Directive are thereby unnecessary. This saves both space and money. The servo driver's safety functions fulfill the following safety standards: EN954-1(CAT3), ISO13849-1 (PLd), EN61508 (SIL2), EN62061(SIL2), EN61800-5-2(STO), IEC61326-3-1.

Dynamic brake:
The dynamic brake is activated in case of an emergency, i.e. when:

- The main switch has been turned off,
- The input SRV-OFF is not active,
- One of the protective functions is activated or,
- The input INH is not active.

Torque limit

Torque limit is an indispensable function for torque-controlled applications or generally for protection against mechanical damages.

Possible settings:

- As specified by analog value,
- Different values for positive and negative direction,
- 2 digital input points for fixed values.

Vibration reduced to only $1 / 8$

* For motors with a holding brake $<1 \mathrm{~kW}$ you need two cables: one for the motor, one for the brake.

				Frame	MINAS A5E	MINAS A5, A5N, A5B
	Input power	Main circuit	৪ì	A, B, C, D	1-phase, 3-phase, 200-240V (+10\%, -15\%), 50/60Hz	
		Control circuit		A, B, C, D	1-phase, $200-240 \mathrm{~V}$ (+10\%, -15\%), 50/60Hz	
				E, F	1-phase, 200-230V (+10\%, -15\%), 50/60Hz	
		Main circuit	৪े	$\begin{gathered} \mathrm{D}, \mathrm{E}, \mathrm{~F}, \\ \mathrm{G}, \mathrm{H} \end{gathered}$	-	3-phase, 380-480V (+10\%, -15\%), 50/60Hz
		Control circuit		$\begin{gathered} \mathrm{D}, \mathrm{E}, \mathrm{~F}, \\ \mathrm{G}, \mathrm{H} \end{gathered}$	-	24 V DC ($\pm 15 \%$)
	Operating conditions	Temperature			$0-50^{\circ} \mathrm{C}$, storage temperature: -20 to $+65^{\circ} \mathrm{C}$ (max. temperature $80^{\circ} \mathrm{C}$ for 72 h)	$0-55^{\circ} \mathrm{C}$, storage temperature: -20 to $+65^{\circ} \mathrm{C}$ (max. temperature $80^{\circ} \mathrm{C}$ for 72 h)
		Ambient humidity			Operation and storage: 20-85\% RH (non-condensing)	
		Altitude			Max. 1000m above sea level	
		Vibration			Max. $5,88 \mathrm{~m} / \mathrm{s}^{2}, 10-60 \mathrm{~Hz}$ (no continuous use at resonance frequency)	
0 0 0 20 0 4 0	Control method				IGBT sinusoidal PWM	
	Encoder	Incremental (default)			20-bit incremental encoder (resolution 1,048,576 p/r)	
		Absolute			-	17-bit absolute encoder on request (resolution 131,072)
	External feedback scale			phase	-	Initialization signal differential input
				Serial	-	Compatible with Mitutoyo (AT500, ST771)
	Control signals			ut points	10	
				put points	6	
	Analog/digital signals			ut points	-	$\begin{gathered} 3 \\ (16 \text {-bit A/D: 1, 12-bit A/D: 2) } \end{gathered}$
				put points	2	
	Pulse signals			ut points	2 line driver	
				put points	3 line driver (A, B, and Z-phase), 1 open collector (Z-phase)	
	Interface			USB	Interface to PC, etc.	
				RS232	-	1:1 communication
				RS485	-	1:n communication with up to 31 axes via host (FP series PLC)
	Safety functions				-	IEC61800-5-2 STO
	Front panel				5 buttons (MODE, SET, UP, DOWN, SHIFT), LED (6 digits), analog output	5 buttons (MODE, SET, UP, DOWN, SHIFT), LED (6 digits), analog output, digital output
	Braking resistor				$\mathrm{A}, \mathrm{B}, \mathrm{G}$, and H frame: only external braking resistor C-F frame: built-in braking resistor (external braking resistor also possible)	
	Dynamic brake				A-G frame: built-in braking resistor (G frame: external braking resistor can be implemented) H frame: only external braking resistor	
	Control mode				Position control	7 different control modes 1. Position control, 2. Velocity control, 3. Torque control, 4. Position/ velocity control, 5 . Position/torque control, 6. Velocity/torque control, 7. Full-closed control

Frame A, B, C

Rack mounting (mounting bracket optional)

Frame E

Frame F

		Width		Mounting bracket				Height			Depth		Control panel		
Frame	Voltage	L1	L2	M	N1	N2	N3	A	B	C	P1	P2	B1	B2	Weight
A	200V	40	-	40	-	7	-	180	170	150	133	151	28	6	0.8kg
B	200V	55	-	47	-	7	-	180	170	150	133	151	43	6	1.0kg
C	200V	65	-	40	-	20	-	180	170	150	173	191	50	7.5	1.6 kg
D	200V	85	86	60	40	10	-	180	170	150	173	191	70	8.5	1.8 kg
	400V	85	92	60	40	10	-	180	170	150	173	191	70	7.5	1.9 kg
E	200V	85	86	85	50	17.5	42.5	198	188	168	196	212	*	*	2.7 kg
	400V	85	94	85	50	17.5	42.5	198	188	168	196	212	*	*	2.7 kg
F	200 V	130	130	130	100	15	65	250	240	220	214	-	*	*	4.8 kg
	400V	130	130	130	100	15	65	250	240	220	214	-	*	*	4.7 kg

* For the dimensions, please refer to the data sheet of the mounting bracket

Name plate X6: Encoder

Frame G

Frame H

MSME（low inertia）50－1500W 200V AC								
Motor		MSME5AZG1ロ	MSME012G1口	MSME022G1ロ	MSME042G1ロ	MSME082G1ロ	MSME102G1ロ	MSME152G1ロ
Rated power W		50	100	200	400	750	1000	1500
Required power kVA		0.5			0.9	1.3	1.8	3.3
Rated current A		1.1		1.5	2.4	4.1	6.6	8.2
Max．current A o－p		4.7		6.5	10.2	17.4	28	35
Rotational speed r／min	Rated rotational speed	3000						
	Max．rotational speed	6000					5000	
Weight kg	Without holding brake	0.31	0.46	0.78	1.2	2.3	3.5	4.4
	With holding brake	0.51	0.66	1.2	1.6	3.1	4.5	5.4
Torque Nm	Nominal	0.16	0.32	0.65	1.3	2.4	3.18	4.77
	Maximal	0.48	0.95	1.91	3.8	7.1	9.55	13.3
Encoder		20－bit incremental encoder resolution：1，048，576 p／r						
Braking resistor frequency times／min	With internal resistor	No limit						
	With external resistor	No limit						
Moment of inertia of rotor（ $\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ ）	Without holding brake	0.025	0.051	0.14	0.26	0.87	2.03	2.84
	With holding brake	0.027	0.054	0.16	0.28	0.97	2.35	3.17
Recommended inertia ratio between load and rotor		Max．30：1				Max．20：1	Max．15：1	
Operating conditions	Temperature （without frost）	$0-40^{\circ} \mathrm{C}$						
	Ambient humidity	20－85\％RH（non－condensing）						
	Altitude	Max．1000m above sea level						
	Vibration	$49 \mathrm{~m} / \mathrm{s}^{2}$						
Holding brake specifications（The holding brake is engaged when the power for the servo driver is shut off．Do not use the holding brake when the motor is in motion．）								
Static friction torque Nm		Min． 0.29		Min． 1.27		Min． 2.45	Min． 7.8	
Engaging time ms		Max． 35		Max． 50		Max． 70	Max． 50	
Releasing time ms		Max． 20		Max． 15		Max． 20	Max． 15	
Excitation current A DC		0.3		0.36		0.42	$0.81 \pm 10 \%$	
Releasing voltage V DC		Min． 1						
Excitation voltage V DC		$24 \pm 5 \%$						
Permissible load and thrust at output shaft								
During installation	Radial load， P－direction N^{\star}	147		392		686	980	
During operation		68.6		245		392	490	
During installation	Axial thrust（push）， A－direction N^{\star}	88		147		294	588	
During operation		58.8		98		147	196	
During installation	Axial thrust（pull）， B－direction N^{*}	117.6		196		392	686196	
During operation				147				

＊For details，please refer to page 19.

MDME（middle inertia）1000－1500W 200V AC			
Motor		MDME102G1ロ	MDME152G1ロ
Rated power W		1000	1500
Required power kVA		1.8	2.3
Rated current A		5.7	9.4
Max．current A o－p		24	40
Rotational speed r／min	Rated rotational speed	2000	
	Max．rotational speed	3000	
Weight kg	Without holding brake	5.2	6.7
	With holding brake	6.7	8.2
Torque Nm	Nominal	4.77	7.16
	Maximal	14.3	21.5
Encoder		20－bit incremental encoder resolution： $1,048,576 \mathrm{p} / \mathrm{r}$	
Braking resistor frequency times／min	With internal resistor	No limit	
	With external resistor	No limit	
Moment of inertia of rotor （ $\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ ）	Without holding brake	4.6	6.7
	With holding brake	5.9	7.99
Recommended inertia ratio between load and rotor		Max．10：1	
Operating conditions	Temperature（without frost）	$0-40^{\circ} \mathrm{C}$	
	Ambient humidity	20－85\％RH（non－condensing）	
	Altitude	Max．1000m above sea level	
	Vibration	$49 \mathrm{~m} / \mathrm{s}^{2}$	
Holding brake specifications（The holding brake is engaged when the power for the servo driver is shut off． Do not use the holding brake when the motor is in motion．）			
Static friction torque Nm		Min． 4.9	Min． 13.7
Engaging time ms		Max． 80	Max． 100
Releasing time ms		Max． 70	Max． 50
Excitation current A DC		$0.59 \pm 10 \%$	$0.79 \pm 10 \%$
Releasing voltage V DC		Min． 2	
Excitation voltage V DC		$24 \pm 10 \%$	
Permissible load and thrust at output shaft			
During installation During operation	Radial load， P－direction N^{*}	980	
		490	
During installation	Axial thrust（push）， A－direction N^{\star}	588	
		196	
During installation	Axial thrust（pull）， B－direction N^{\star}	686	
During operation			

MDME（middle inertia）2000－15000W 400V AC										
Motor		MDME204G1ロ	MDME304G1ロ	MDME404G1ロ	MDME504G1］	MDME754G1］	MDMEC14G1ロ	MDMEC54G1ロ		
Rated power W		2000	3000	4000	5000	7500	11000	15000		
Required power kVA		3.3	4.5	6.8	7.5	11	17	22		
Rated current A		5.9	8.7	10.6	13	22	27.1	33.1		
Max．current A o－p		25	37	45	55	83	101	118		
Rotational speed r／min	Rated rotational speed	2000				1500				
	Max．rotational speed	3000				2000				
Weight kg	Without holding brake	8	11	15.5	18.6	36.4	52.7	70.2		
	With holding brake	9.5	12.6	18.7	21.8	40.4	58.9	76.3		
Torque Nm	Nominal	9.55	14.3	19.1	23.9	47.8	70	95.5		
	Maximal	28.6	43.0	57.3	71.6	119	175	224		
Encoder		20－bit incremental encoder resolution：1，048，576 p／r								
Braking resistor frequency times／min	With internal resistor	No limit			120	No limit				
	With external resistor	No limit								
Moment of inertia of rotor（ $\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ ）	Without holding brake	8.72	12.9	37.6	48	101	212	302		
	With holding brake	10	14.2	38.6	48.8	107	220	311		
Recommended inertia ratio between load and rotor		Max．10：1				Max．1：1				
Operating conditions	Temperature （without frost）	0－40 ${ }^{\circ}$								
	Ambient humidity	20－85\％RH（non－condensing）								
	Altitude	Max．1000m above sea level								
	Vibration	$49 \mathrm{~m} / \mathrm{s}^{2}$				24．5m／s ${ }^{2}$				
Holding brake specifications（The holding brake is engaged when the power for the servo driver is shut off．Do not use the holding brake when the motor is in motion．）										
Static friction torque Nm		Min． 13.7	Min． 16.2	Min． 24.5		Min． 58.8	Min． 100			
Engaging time ms		Max． 100	Max． 110	Max． 80		Max． 150	Max． 300			
Releasing time ms		Max． 50		1．3 $\pm 10 \%$		Max． 50	Max． 140			
Excitation current A DC		$0.79 \pm 10 \%$	$0.90 \pm 10 \%$			$1.4 \pm 10 \%$	$1.08 \pm 10 \%$			
Releasing voltage V DC		Min． 2								
Excitation voltage V DC		$24 \pm 5 \%$								
Permissible load and thrust at output shaft										
During installation	Radial load， P－direction N^{*}	980		1666		2058	4508			
During operation		490			784	1176	2254			
During installation	Axial thrust（push）， A－direction N^{*}	588		784		980	1470			
During operation		196		343		490	686			
During installation	Axial thrust（pull），B－direction N^{\star}			1176	1764					
During operation		196						343		490

[^1]| MHMD（high inertia）200－750W 200V AC | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Motor | | MHMD022G1］ | MHMD042G1ロ | MHMD082G1ロ |
| Rated power W | | 200 | 400 | 750 |
| Required power kVA | | 0.5 | 0.9 | 1.3 |
| Rated current A | | 1.6 | 2.6 | 4 |
| Max．current A o－p | | 6.9 | 11 | 17 |
| Rotational speed $\mathrm{r} / \mathrm{min}$ | Rated rotational speed | 3000 | | |
| | Max．rotational speed | 5000 | | 4500 |
| Weight kg | Without holding brake | 0.96 | 1.4 | 2.5 |
| | With holding brake | 1.4 | 1.8 | 3.5 |
| Torque Nm | Nominal | 4.77 | 7.16 | 9.55 |
| | Maximal | 14.3 | 21.5 | 43.0 |
| Encoder | | 20－bit incremental encoder resolution：1，048，576 p／r | | |
| Braking resistor frequency times／min | With internal resistor | No limit | | |
| | With external resistor | No limit | | |
| Moment of inertia of rotor（ $\mathrm{x} 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$ ） | Without holding brake | 0.42 | 0.67 | 1.51 |
| | With holding brake | 0.45 | 0.7 | 1.61 |
| Recommended inertia ratio between load and rotor | | Max．30：1 | | Max．20：1 |
| Operating condi－ tions | Temperature（without frost） | $0-40^{\circ} \mathrm{C}$ | | |
| | Ambient humidity | 20－85\％RH（non－condensing） | | |
| | Altitude | Max．1000m above sea level | | |
| | Vibration | $49 \mathrm{~m} / \mathrm{s}^{2}$ | | |
| Holding brake specifications（The holding brake is engaged when the power for the servo driver is shut off．Do not use the holding brake when the motor is in motion．） | | | | |
| Static friction torque Nm | | Min． 1.27 | | Min． 2.45 |
| Engaging time ms | | Max． 50 | | Max． 70 |
| Releasing time ms | | Max． 30 | | Max． 20 |
| Excitation current A DC | | | | 0.42 |
| Releasing voltage V DC | | Min． 1 | | |
| Excitation voltage V DC | | $24 \pm 5 \%$ | | |
| Permissible load and thrust at output shaft | | | | |
| During installation | Radial load， P－direction N^{\star} | 392 | | 686 |
| During operation | | | | 392 |
| During installation | Axial thrust（push）， A－direction N^{\star} | 147 | | 294 |
| During operation | | 98 | | 147 |
| During installation | Axial thrust（pull）， B－direction N^{\star} | 196 | | 392 |
| During operation | | | | 147 |

MHME（high inertia）1000－7500W 400V AC								
Motor		MHME104G1ロ	MHME154G1］	MHME204G1］	MHME304G1ロ	MHME404G1］	MHME504G1ロ	MHME754G1ロ
Rated power W		1000	1500	2000	3000	4000	5000	7500
Required power kVA		1.8	2.3	3.3	4.5	6.8	7.5	11
Rated current A		5.7	9.4	11.1	16	21	25.9	44
Max．current A o－p		24	40	47	68	83	110	165
Rotational speed $\mathrm{r} / \mathrm{min}$	Rated rotational speed	2000						1500
	Max．rotational speed	3000						
Weight kg	Without holding brake	6.7	8.6	12.2	16	18.6	23	42.3
	With holding brake	9.1	10.1	15.5	19.2	21.8	26.2	46.2
Torque Nm	Nominal	4.77	7.16	9.55	14.3	19.1	23.9	47.8
	Maximal	14.3	21.5	43.0	28.6	57.3	71.6	119
Encoder		20－bit incremental encoder resolution：1，048，576 p／r						
Braking resistor frequency times／min	With internal resistor	83	22	45	19	17	10	No limit
	With external resistor	No limit	130	142	42	125	76	No limit
Moment of inertia of rotor$\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	Without holding brake	24.7	37.1	57.8	90.5	112	162	273
	With holding brake	26	38.4	59.6	92.1	114	164	279
Recommended inertia ratio between load and rotor		Max．5：1						
Operating conditions	Temperature（without frost）	$0-40^{\circ} \mathrm{C}$						
	Ambient humidity	20－85\％RH（non－condensing）						
	Altitude	Max．1000m above sea level						
	Vibration	$49 \mathrm{~m} / \mathrm{s}^{2}$						$24.5 \mathrm{~m} / \mathrm{s}^{2}$
Holding brake specifications（The holding brake is engaged when the power for the servo driver is shut off．Do not use the holding brake when the motor is in motion．）								
Static friction torque Nm		Min． 4.9	Min． 13.7	Min． 24.5				Min． 58.8
Engaging time ms		Max． 80	Max． 100	Max． 80				Max． 150
Releasing time ms		Max． 70	Max． 50	Max． 25				Max． 50
Excitation current A DC		$0.59 \pm 10 \%$	0．79 $\pm 10 \%$	$1.3 \pm 10 \%$				$1.41 \pm 10 \%$
Releasing voltage V DC		Min． 2						
Excitation voltage V DC		$24 \pm 5 \%$						
Permissible load and thrust at output shaft								
During installation	Radial load， P－direction N＊	980		1666				2058
During operation		490		784				1176
During installation	Axial thrust（push）， A－direction N^{\star}	588		784				980
During operation			196	343				490
During installation During operation	Axial thrust（pull）， B－direction N^{*}	686		980				1176
		196		343				490

＊For details，please refer to page 19

MSME022G1口

MSME082G1■

MSME152G1口

MSME012G1■

MSME042G1ロ

MSME102G1■

Permissible load at output shaft

Radial load，P－direction

Thrust load，A－and B－direction

MSME154G1ロ

MSME204G1口

MSME404G1■

MSME304G1口

MSME504G1■

MDME152G1■

MDME304G1口

MDME504G1口

MHMD042G1口

MHME154G1ロ

MHME304G1口

MHME754G1口

MSME（low inertia）50－750W 200V AC												
Rated power		W	50		100		200		400		750	
Motor		Type	MSME5AZG1■		MSME012G1■		MSME022G1■		MSME042G1■		MSME082G1■	
Encoder			20－bit incremental encoder resolution：1，048，576 p／r									
Motor with／without holding brake			Without	With								
LL		mm	72	102	92	122	79.5	116	99	135.5	112	148.2
LR		mm	25				30				35	
S		mm	$\varnothing 8$ h6				$\varnothing 11 \mathrm{h6}$		$\varnothing 14 \mathrm{~h} 6$		$\varnothing 19 \mathrm{~h} 6$	
LA		mm	$\varnothing 45 \pm 0.2$				$\varnothing 70 \pm 0.2$				$\varnothing 90 \pm 0.2$	
LB		mm	$\varnothing 30 \mathrm{~h} 7$				$\varnothing 50 \mathrm{~h} 7$				$\varnothing 70 \mathrm{~h} 7$	
LC		mm	38				60				80	
LD		mm	48	78	68	98	56.5	93	76	112.5	86.2	122.2
LE		mm	3				3				3	
LF		mm	6				3				8	
LG		mm	24				23				26	
LH		mm	（46．6）				（52．5）				（61．6）	
LN		mm	43				－				－	
LZ		mm	4－$\varnothing 3.4$				4－$\varnothing 3.4$		4－$\varnothing 4.5$		4－$\varnothing 6$	
Key way	LW	mm	14				20		25		25	
	LK	mm	12.5				18		22.5		22	
	KW	mm	3 h 9				4 h 9		5 h 9		6 h9	
	KH	mm	3				4		5		6	
	RH	mm	6.2				8.5		11		15.5	
	TP	mm	M3，depth 6				M4，depth 8		M5，depth 8		M5，depth 10	
Weight		kg	0.32	0.53	0.47	0.68	0.82	1.30	1.2	1.7	2.3	3.1
Encoder cables		Type	MFECA0口ロ0WJD									
Motor cable		Type	MFMCA0ロロ0WJD									
Brake cables		Type	MFMCB0ロロ0PJT									
Connector set		Type	DVOPM20035（motor＋encoder）									

$\square=$ Length $\quad 110=1 \mathrm{~m} \quad 500=5 \mathrm{~m}$

1kW－5kW

a）Encoder connector
b）Motor connector

MSME（low inertia）1kW－1．5kW 200V AC， $1 \mathrm{~kW}-5 \mathrm{~kW}$ 400V AC								
Rated power		kW	1.0	1.5	2.0	3.0	4.0	5.0
Motor	200V AC	Type	MSME102G1■	MSME152G1■	－	－	－	－
	400 V AC		MSME104G1■	MSME154G1ロ	MSME204G1ロ	MSME304G1口	MSME404G1口	MSME504G1口
LL	Without holding brake	mm	141	159.5	178.5	190	208	243
	With holding brake	mm	168	186.5	205.5	215	233	268
LR		mm	55			55	65	
S		mm	$\varnothing 19$ h6			$\varnothing 22$ h6	$\varnothing 24 \mathrm{h6}$	
LA		mm	$\varnothing 135$			$\varnothing 162$	$\varnothing 165$	
LB		mm	$\varnothing 95 \mathrm{~h} 7$			$\varnothing 110 \mathrm{~h} 7$		
LC		mm	100			120	130	
LD		mm	$\varnothing 115$			$\varnothing 145$		
LE		mm	3				6	
LF		mm	10			12	12	
LG		mm	（60）			（60）		
LH		mm	（101）			（113）	（118）	
LZ		mm	$4 \varnothing 9$					
Key way	LW	mm	45				55	
	LK	mm	42			41	51	
	KW	mm	6 h9			8 h9		
	KH	mm	6			7		
	RH	mm	15.5			18	20	
Weight	Without holding brake	kg	3.5	4.4	5.3	8.3	11	14
	With holding brake	kg	4.5	5.4	6.3	9.4	12.6	16
Encoder cables		Type	MFECA0ロロ0GTD					
Motor cable		Type	MFMCD0 \square［2GCD			MFMCA0ロロ2GCT		
Motor cable with holding brake	200V AC	Type	MFMCA0ロロ2HCD			MFMCAOロロ2HCT		
	400V AC	Type	MFMCE0ロロ2HCD					
Connector set		Type	DV0PM20036（motor＋encoder）			DV0PM20037（motor＋encoder）		
Connector set with holding brake		Type	DV0PM20038（motor＋encoder＋holding brake）			DV0PM20039（motor＋encoder＋holding brake）		

\square＝Length $\quad \square 10=1 \mathrm{~m} \quad 500=5 \mathrm{~m}$

1kW－5kW

a）Encoder connector
b）Motor connector

MDME（middle inertia）1kW－1．5kW 200V AC， $2-5 \mathrm{~kW} 400 \mathrm{~V}$ AC								
Rated power		kW	1.0	1.5	2.0	3.0	4.0	5.0
Motor	200 V AC	Type	MDME102G1ロ	MDME152G1■	－	－	－	－
	400V AC		－	－	MDME204G1口	MDME304G1口	MDME404G1口	MDME504G1■
LL	Without holding brake	mm	138	155.5	173	208	177	196
	With holding brake	mm	163	180.5	198	233	202	221
LR		mm	55		55	65	70	
S		mm	$\varnothing 22$ h6			$\varnothing 24$ h6	$\varnothing 35 \mathrm{~h} 6$	
LA		mm	$\varnothing 165$				$\varnothing 233$	
LB		mm	$\varnothing 110 \mathrm{~h} 7$				$\varnothing 114.3$ h7	
LC		mm	130				176	
LD		mm	$\varnothing 145$				$\varnothing 200$	
LE		mm	6				3.2	
LF		mm	12				18	
LG		mm	（84）					
LH		mm	（116）		（118）		（140）	
LZ		mm	$4 \times \varnothing 9$				$4 \times \varnothing 13.5$	
Key way	LW	mm	45				55	
	LK	mm	41		51		50	
	KW	mm	8 h9				10 h 9	
	KH	mm	7				8	
	RH	mm	18		20		30	
Weight	Without holding brake	kg	5.2	6.7	8.0	11.0	15.6	18.6
	With holding brake	kg	6.7	8.2	9.5	12.6	18.7	21.8
Encoder cables		Type	MFECA0ロロ0GTD					
Motor cable		Type	MFMCD0 $\square \square 2 \mathrm{GCD}$			MFMCA0 $\square \square 2 \mathrm{GCT}$		
Motor cable with holding brake	200V AC	Type	MFMCA0ロロ2HCD			MFMCA0ロロ2HCT		
	400 V AC	Type	MFMCE0口口2HCD					
Connector set		Type	DV0PM20036（motor＋encoder）			DV0PM20037（motor＋encoder）		
Connector set with holding brake		Type	DVOPM20038（motor＋encoder＋holding brake）			DV0PM20039（motor＋encoder＋holding brake）		

\square＝Length
$10=1 \mathrm{~m}$
$50=5 \mathrm{~m}$

7．5kW－15kW

a）Encoder connector
b）Brake connector
c）Motor connector

MDME（middle inertia） $7.5 \mathrm{~kW}-15 \mathrm{~kW} 400 \mathrm{~V}$ AC					
Rated power		kW	7.5	11	15
Motor	400V AC	Type	MDME754G1口	MDMEC14G1ロ	MDMEC54G1■
LL	Without holding brake	mm	312	316	384
	With holding brake	mm	337	364	432
LR		mm	113	116	
S		mm	$\varnothing 42 \mathrm{h6}$	$\varnothing 55 \mathrm{h6}$	
LA		mm	$\varnothing 233$	$\varnothing 268$	
LB		mm	$\varnothing 114.3$ h7	$\varnothing 200 \mathrm{~h} 7$	
LC		mm	176	220	
LD		mm	$\varnothing 200$	$\varnothing 235$	
LE		mm	3.2	4	
LF		mm	24	32	
LG		mm	（60）		
LH		mm	（184）	（205）	
LZ		mm	$4 \times \varnothing 13.5$		
Key way	LW	mm	96	98	
	LK	mm	90		
	KW	mm	12 h 9	16 h 9	
	KH	mm	8	10	
	RH	mm	37	49	
Weight	Without holding brake	kg	36.4	52.7	70.2
	With holding brake	kg	40.4	58.9	76.3
Encoder cables		Type	MFECA0ロロ0GTD		
Motor cable with holding brake	400V AC	Type	To be used with DV0PM20056		
Connector set		Type	DVOPM20056（motor＋encoder）		
Connector set with holding brake		Type	DV0PM20057（motor＋encoder＋holding brake）		

$\square=$
＝Length
$10=1 \mathrm{~m}$
$50=5 m$

a）Encoder connector
b）Motor connector

MHME（medium inertia）1kW－7．5kW 400V AC									
Rated power		kW	1.0	1.5	2.0	3.0	4.0	5.0	7.5
Motor	400V AC	Type	MHME104G1■	MHME154G1■	$\begin{gathered} \text { MH- } \\ \text { ME204G1口 } \end{gathered}$	MHME304G1口	$\begin{gathered} \text { MH- } \\ \text { ME404G1[} \end{gathered}$	$\begin{gathered} \text { MH- } \\ \text { ME504G1C } \end{gathered}$	$\begin{gathered} \mathrm{MH}- \\ \text { ME754G1 } \end{gathered}$
LL	Without holding brake	mm	173	190.5	177	196	209.5	238.5	357
	With holding brake	mm	198	215.5	202	221	234.5	263.5	382
LR		mm	70		80				113
S		mm	$\varnothing 22$ h6		$\varnothing 35 \mathrm{~h} 6$				$\varnothing 42$ h6
LA		mm	$\varnothing 165$		$\varnothing 233$				
LB		mm	$\varnothing 110 \mathrm{~h} 7$		$\varnothing 114.3$ h7				
LC		mm	130		176				
LD		mm	$\varnothing 145$		$\varnothing 200$				
LE		mm	6		3.2				
LF		mm	12		18				24
LG		mm	（60）						
LH		mm	（116）		（140）				（184）
LZ		mm	$4 \times \varnothing 9$		$4 \times \varnothing 13.5$				
Key way	LW	mm	45		55				96
	LK	mm	41		50				90
	KW	mm	8 h9		10 h 9				12 h 9
	KH	mm	7		8				
	RH	mm	18		30				37
Weight	Without holding brake	kg	6.7	8.6	12.2	16	18.6	23	42.3
	With holding brake	kg	8.1	10.1	15.5	19.2	21.8	26.2	46.2
Encoder cables		Type	MFECA0 $\square \square 0 G T D$						
Motor cable		Type	MFMCD0 $\square \square 2 G C D$			MFMCE0ロप2GCD	MFMCA0 $\square \square 2 \mathrm{GCD}$		－
Motor cable with holding brake	200 V AC	Type	MFMCA0ロロ2HCD			MFMCA0ロロ2HCT			－
	400 V AC	Type	MFMCE0ロロ2HCD						
Connector set		Type	DV0PM20036（motor＋encoder）			DV0PM20037（motor＋encoder）			DVOPM20056
Connector set with holding brake		Type	－						DV0PM20057

$\square \square=$ Length $\quad 410=1 \mathrm{~m} \quad 510=5 \mathrm{~m}$

Ferrite core: DV0P1460

Weight: 62.8g

EMC filter

FN2080-6-06 and FS21238-6-07 for MINAS A5 50-750W and MINAS LIQI 50-1000W 1-phase drivers

Dimensions (mm)	FN2080-6-06
A	113.5
B	57.5
C	45.4
D	94
E	56
F	103
G	25
H	12.4
I	32.4
J	15.5
K	4.4
L	6
M	0.9
N	6.3×0.8

All dimensions are in mm .

DVOP4220 for 1-1.5kW 1-phase driver

FN3268-7-44 for 1-3kW 3-phase driver, FN3268-16-44 for 4-5kW 3-phase driver

Dimensions (mm)	FN3268-7-44	FN3268-16-44
A	190	250
B	40	45
C	70	
D	160	220
E	180	235
F	20	25
G	4.5	5.4
H	1	
1	22	
J	M5	
K	20	22.5
L	29.5	

Type	FP7	FP2SH
Features		
	Modular high-performance PLC - Scan time of $11 \mathrm{~ns} /$ step - Program capacity of 196 k steps - Additional program capacity with SDHC memory card - Batteryless data backup - Ethernet 100BASE-TX/10BASE-TX - Expandable with up to 16 units for different applications	Modular high-performance PLC - Scan time of 1 ms for 20 k steps - As a high-performance PLC with fast scan times ideally suited for electronic device manufacturing - High program capacity of 120 k steps - $32 \mathrm{k}, 60 \mathrm{k}$ step type also available - Compatible with Small PC Cards, which serve as a program backup or extended memory for processing a large volume of data - 8192 I/O points max. (remote I/O system)

Type	FP Σ (Sigma)	FP0R
Features	Very compact high-performance PLC reliably supports the control of higher speed equipment with more functions featured - Excellent basic performance, including program capacity of 32 k steps, operation speed of $0.32 \mu \mathrm{~s} / \mathrm{step}$ and $384 \mathrm{I} / \mathrm{O}$ points - Built-in 2-axis 100 kHz pulse output capable of interpolation control - Positioning units capable of controlling network motion controllers - Can be equipped with up to 3 ports for program controlled communication without expansion unit - Compatible with PROFIBUS, DeviceNet, CANopen and other open field networks	Pocket-size ultracompact controller ideal for use in extremely narrow spaces - Ultrahigh processing speed of $80 \mathrm{~ns} / \mathrm{step}$ within a range of 0 to 3000 steps - Program capacity from 16k-32k steps - 10-128 I/Os - Up to 24 thermocouple input points connectable for multipoint temperature control - Multiaxis control for up to 4 axes available without expansion units - Batteryless backup of all data

Jog positioning control (F171 instruction)

Motion can be started without a preset target value.
When a stop signal is input, the target value is set, and the motion is slowed to a stop.

Useful for
Labelers: Stopping the motion at a constant distance from the poin where a label end detection signal is triggered

- Processing machines: Stopping the motion at a constant distance from the point where a processing object edge detection signal is triggered, and cut/drill the object

Changing the speed (F171 and F172 instructions)

The target speed can be changed by an external signal input during the jog or trapezoidal control operation.

Built-in 4-axis pulse outputs (Transistor output type)
Multi-axis (4-axis) control is available without expansion units.

Simultaneously usable high speed counters (6 channels) and pulse outputs (4 channels)

Individual settings for acceleration and deceleration (F171, F172, F174, and F175 instructions)

Measuring the pulse frequency (F178 instruction)
Pulses input in a specified period by a single instruction are counted, and the frequency is calculated.

Two sets can simultaneously undergo two-axis linear interpolation (F175 instruction).

Built-in multipoint PWM outputs (4 channels)
A single FPOR unit can control the speeds of up to six DC motors/fan motors. It also can serve as an analog voltage output unit.

PLC	Product number	Voltage	Output	Input points (counters)	Output points (axes)
	AFPORC16a	24VDC	Transistor NPN	8 (6)	8 (4)
	AFP0RC327a			16 (6)	16 (4)
	AFP0RF327a				

Integrated linear and circular interpolation control

Interpolation functions enable simultaneous control of two axes. Applications that a compact PLC couldn't previously cope with are no longer a challenge. With linear interpolation, the PLC achieves a coordinated, linear movement of the two axes and controls the speed of each axis. Circular interpolation allows points to be smoothly traversed by arced paths for which the user specifies the orientation plane, the radius of curvature, motion path profile and direction of motion.

Simple and intuitive programming

For programming, a preset value table for starting speed, target speed, acceleration/deceleration time, and other factors will be used. Comes with dedicated instructions for each mode: trapezoidal control, home return, JOG operation, free table operation, linear interpolation and circular interpolation.

Clockwise/counter-clockwise output method

Reduce overall costs by designing systems that combine with servo motors and small stepping motors without support for Pulse and Sign method.

Smooth acceleration/deceleration

You can choose to set up to 60 steps of acceleration/deceleration. This allows for a smoother movement during long acceleration/ deceleration periods of stepping motors.

Home position return

Home search automatically reverses the motor rotation when the positive or negative limit switch is reached and searches for the home position or near home position.

Pulse output up to 100 kHz

A high output frequency and a rapid 0.02 ms start allow for a precise and very fast positioning.

FPE Pulse output CW

PLC	Product no.	Voltage	Output	Input points	Output points (axes)
	FPGC32T2H	24 V DC	Transistor NPN	16	$16(2)$
	FPGC28T2H	24 VDC	Transistor NPN	16	$12(2)$

Positioning unit	Product no.	Output type	Output type
	FPG-PP11	1-axis type	Transistor
	FPG-PP21	2-axis type	
	FPG-PP12	1-axis type	Line driver
	FPG-PP22	2-axis type	

For low cost multi-axis position control

Built-in 4-axis pulse output (transistor output type)

The transistor output type C14 comes with 3-axis while C30/C38 and C60 come with 4 -axis pulse output inside the control unit. The multiaxis control, which previously required a higher-level PLC or additional positioning unit, or two or more PLC units, can now be achieved with only one FP-X transistor output type unit in a small space at a low cost. In addition, as this type does not require a pulse I/O cassette

Characteristic	Specification
Max. pulse output	$\mathrm{C} 14: 100 \mathrm{kHz}(\mathrm{CHO}, 1), 20 \mathrm{kHz}(\mathrm{CH} 2) \mathrm{C} 30, \mathrm{C} 38, \mathrm{C} 60$ $100 \mathrm{kHz}(\mathrm{CHO}, 1), 20 \mathrm{kHz}(\mathrm{CH} 2,3)$
Pulse output methods	$\mathrm{CW} / \mathrm{CCW}$, Pulse + direction
Function	Trapezoidal control, multi-stage operation, jog op- eration, origin return, 2-axis linear interpolation

XY table + processing head

Semiconductor wafer takeout blade

4-axis control with C30/C60

2-axis control with expansion cassettes for relay output types

Pulse output up to 2-axis 80 kHz is possible by loading 2 pulse I/O cassettes (AFPXPLS). Also capable of performing 2-axis linear interpolation.

Note:
Pulse I/O cassette does not work with transistor CPU output

Linear interpolation simultaneously in 2 sets (transistor output type)

2-axis linear interpolation refers to moving a robot arm or equipment head diagonally on a straight line by simultaneously controlling 2 motor shafts. It is used for palletizing, component pick and place, XY table control, contour cutting of a PC board, etc. This makes the FP-X transistor output type the first compact pulse-output PLC capable of simultaneously controlling linear interpolation for 2 sets of axes. This unit dramatically expands the range of applications along with the added convenience of programming by using the linear interpolation command F175_PulseOutput_Linear.

Simultaneous control of 2 mechanisms

Controls two units of 2-axis XY table

2-axis linear interpolation with relay output types

By adding 2 pulse I/O cassettes (AFPXPLS), linear interpolation is possible at the maximum composite speed of 80 kHz . The command used for this unit is F175_ PulseOutput_Linear, the same as that for the transistor output types.

PLC	Product no.	Voltage	Output	Input points	Output points (axes)
	AFPXC14TDJ	24VDC	Transistor NPN	8	6 (3)
	AFPXC14TJ	100-240V AC			
	AFPXC14PDJ	24VDC	Transistor PNP		
	AFPXC14PJ	100-240V AC			
	AFPXC30TDJ	24VDC	Transistor NPN	16	14 (4)
	AFPXC30TJ	100-240V AC			
	AFPXC30PDJ	24VDC	Transistor PNP		
	AFPXC30PJ	100-240V AC			

PLC	Product no.	Voltage	Output	Input points	Output points (axes)
	AFPXC60TDJ	24V DC	Transistor NPN	32	28 (4)
	AFPXC60TJ	100-240V AC			
	AFPXC60PDJ	24V DC	Transistor PNP		
	AFPXC60PJ	100-240V AC			

FP7

Features

- Linear, circular, and spiral interpolation
- Max. speed 4Mpps (line driver), 500Kpps (transistor)
- Up to 600 points for each axis
- Integrated configurator software PM7 for parameter setting, JOG operation, home return, creation of data tables, etc.
- Electronic cam control and electronic gear

Product no.	Function	Output	Output points (axes)
FP7-PP02T	With interpolation	Open collector	2
FP7-PP04T			4
FP7-PP02L		Line driver	2
FP7-PP04L			4

FP2SH

Positioning units (interpolation type)

Features

- A pulse output of up to 4Mpps allows high-speed, highprecision positioning.
- 0.005 ms high-speed drive reduces tact-time (start-up time is the time from reception of the CPU unit start-up command to release of the pulse output by the positioning unit).
- 4 axes per unit means versatility and saves space.
- The four types of S-curve acceleration/deceleration control allow for smooth startup and stoppage.
- Feedback pulse count function makes output pulse counting possible for encoders, etc.
- The pulse input function allows users to generate pulses manually to adjust machines, for example

Functions

- Linear, circular, and spiral interpolation
- Synchronization operations
- E-point control
- P-point control
- JOG operation function
- Smooth acceleration/deceleration: Linear or in 4 curves sine curve, square curve, cycloid curve, and cubic curve

Linear

Circle

Spiral

Positioning unit	Product no.	Functions	Output	Output points (axes)
	FP2-PP2T	With Interpolation	Open collector	2
	FP2-PP4T			4
\cdots	FP2-PP2L		Line driver	2
	FP2-PP4L			4
	FP2-PP21	Without Interpolation	Open collector	2
	FP2-PP41			4
	FP2-PP22		Line driver	2
	FP2-PP42			4

RTEX - the multiaxis Ethernet servo system

The RTEX positioning units support MINAS A5N network servo drives. A mutually optimized system consisting of PLC and motion controller greatly simplifies installation.

The main advantages of the RTEX positioning units:

- Unique: Allows easy control of network servos with an ultra-compact PLC.
- Allows highly accurate control of multi-axis positioning using high-speed $100 \mathrm{Mbit} / \mathrm{s}$ communication.
- Minimization of wiring costs by using commercially available Ethernet cables. Position control of 2, 4, or 8 axes for motion controllers with Ethernet (RTEX) interface.
- Dedicated tool software Control Configurator PM supports operations from setup to startup and monitoring.
- Includes manual pulser input allowing support for precision teaching.

System configuration

No. of positioning units per RTEX unit
FPI (Sigma): 2 units (16 axes)
FP2SH: 32 units (256 axes)

Software Configurator PM for RTEX

The Configurator PM provides powerful yet simple full support ranging from configuration (axis and parameter settings, data table creation, JOG operation, home return, data monitor settings, etc.) to startup and operation monitoring. This saves time and makes commissioning considerably easier.

Product name	FP「 (Sigma)	FP2SH	Number of axes	Output type	Product no.
Positioning units (interpolation type)	-		2	RTEX Ethernet	FPGPN2AN
		-			FP2SHPN2AN
	-		4		FPGPN4AN
		-			FP2SHPN4AN
	-		8		FPGPN8AN
		-			FP2SHPN8AN
Control Configurator PM	for all RTEX units				AFPS66510

Free of charge!

Motion control libraries for Control FPWIN Pro (PLC)

The motion control library contains the most important function blocks, e.g. for relative or absolute positioning and for home returns with linear axes. Panasonic offers libraries for all motion control tasks.

1. CPU Motion Control Library: Position control with FP series control units (FP0R, FP乏 (Sigma), FP-X, FP7)
2.PP Motion Control Library: Positioning with PP motion control units (FPE (Sigma), FP2SH),

FP7: Library included in PLC programming software Control FPWIN Pro
3.RTEX Motion Control Library: Positioning with RTEX motion control units (FPE (Sigma), FP2SH)

Advantages of PLC programs using the Motion Control Library

Free - just download it from Panasonic's website
Simple - easy programming and installation
Efficient - ready-to-use function blocks, only set the parameters
Consistent - compliant with IEC 61131-3
Universal - hardware-independent (works for every Panasonic PLC)
Flexible - expandable for up to 256 axes
Fast - short and easy commissioning (ready-to-use example programs)

Download the software free of charge from Panasonic's website: Home \rightarrow Downloads \rightarrow SPS \rightarrow FPWIN Pro \rightarrow Library

MC_CPU_Library Motion
\square -

RTEX Motion Control Library

© 挴 RTEX_AMP_ReadParameter (FB)
\pm If RTEX_AMP_Restart (FB)
© If RTEX_AMP_WriteEEPROM (FB)
† : If RTEX_AMP_WriteParameter (FB)
AxisInputError [BOOL] (FUN)
AxisSlotInputError [BOOL] (FUN)
CalculateIXIY [YOID] (FUN)

Time chart

Drilling setup

Direct access to servo drive parameters from the PLC

The libraries enable serial communication (RS232, RS485) between the FP series PLCs and the drivers of the MINAS A5 series.
The communication protocols for the drivers are also included in the libraries. The libraries allow full read and write access to the parameters. They also record the status and position data of the axes. All FP series PLCs come with an RS232 port (RS485 optional).
With RS232 connections, the first driver can be used as a gateway to downstream drivers so that all drivers can communicate with the PLC.

Software Configurator PM for RTEX

The Configurator PM offers multiple support from configuration (axis and parameter settings, data table creation, JOG operation, home return, data monitor settings, etc.) to startup and operation. This saves time and makes commissioning considerably easier.

Axis settings

Check the axes to be used. Select the number of axes to be used.

Parameter settings

The details of the settings can be displayed in a table. Details on how to create settings for each category are explained in the box below.

Grouping of axes for interpolation operations is carried out simply by dragging and dropping the relevant axes.

Parameters can be copied between axes. In instances where many settings are shared among the axes, this can reduce the number of repeat inputs.

Data table creation

Software Configurator PM for RTEX

Tool operations

- Each axis can be operated by test sequences independently of the operation modes (PROG and RUN) of the RTEX or FP control unit.
- JOG operation and teaching can be carried out easily to index positioning points. Test operation is possible without having to create a rudder program.

Tool operation	X
Tool operation	
Servo ONJOFF	
Homing..	
Positioning...	
JOG...	
Ieaching...	
Exit	

Data monitor

- Data table no. during operation
- Auxiliary output
- Current position, speed and vector
- Error code, warning code (errors and warnings can also be cleared)

Status monitor

- Connection status of each axis
- Model code of each motor amp and motor connected
- Servo lock status
- Near home input, limit input

Configuring motion controllers

Configuration software PANATERM for MINAS AC servo motors \& drivers

PANATERM assists users in making parameter and control settings as well as creating and analyzing data tables during operation. The software can be installed on any commercially available personal computer. The connection to the MINAS series is established via the USB port.

Basic functions

- Parameter setup
- After a parameter has been defined on the screen, it will immediately be sent to the driver.
- Frequently used parameters can be listed separately in a second display.

Monitoring control conditions

- Monitor
- Settings: control mode, velocity, torque, error and warning
- Driver input signal
- Load conditions: Overview of command/feedback pulses, load ratio, regenerative resistive load ratio
- Alarm
- Display/delete number and contents of the current alarm and the last 14 error events

Setup

- Auto tuning
- Gain adjustment and inertia ratio measurement
- Line graph display
- The line graph diagram shows command and current velocity, torque, and the tracking error.
- Absolute encoder setup
- Clears absolute encoder at the origin
- Displays single turn/multi turn
- Displays absolute encoder status

Analysis of mechanical operation data (frequency analysis)

- Measures frequency characteristics of the machine; displays Bode diagram

Download the software free of charge from Panasonic's website: Home \rightarrow Downloads \rightarrow SPS \rightarrow FPWIN Pro \rightarrow Library

Parameters

Monitor

Line graph display

Motor capacity selection software

Free of charge!

Mselect software

Mselect is a software to help you select the correct motor capacity and motion controller from Panasonic's MINAS series. Find the optimal type of motor with regards to the mechanical layout and the dynamic requirements. It is a very valuable tool for mechanical engineering as it also provides CAD data in 2D and 3D. The software offers a complete analysis and detailed usage instructions for the MINAS A5 series in all sizes.

Selecting the motor capacity is done in four steps:

Figure 2

1. Select mechanical parts and input their parameters (figure 1)

The user can select parts from a database with all mechanical standard parts (gears, coupling, spindle axis, etc.).

2. Determine the motion profile (figure 2)

Speed, position, ramps, etc.
Figure 3
3. Select the correct motor series (figure 3)

1 - or 3-phase, input voltage, torque, etc. The software calculates the parameters for the series selected and displays the different criteria with OK or NG (not good).
4. Check and print result (figure 4)

Figure 4

MINAS SELECTION TOOLS

This is an easy-to-use software to help you select the accessories. The software can be installed on any commercially available PC.

1. Enter motor data, encoder selection, and cable length
2. Click [Select_MINAS] to display all matching accessories

Drivers, filters, cables, etc.
3. You can even have the data sent to you or your customer by e-mail.

Prixascitchontocts	9]	
stealews		
Sew		-
Aluessent	500	\triangle
Ondiver	\bigcirc	-
tus.	Fotase	\because
homeres/Rentis	nomerts	ㅂ
Legth citiosimp	10	\#
Tse\%	Pewse	-
Sehareus		
Steomed unes		
Diwr mose	MCHTM\%	
Maso nead	Mrescsiu	
Macren	Perchione	
Erosor Catio	Fecationdo	
tudecaie		
Angomelbe fisias	Fw6350730	
Nowerem	F37xex	
Saleg la mindue ecoser		
Smedty emal		

Download the software free of charge from Panasonic's website: Home \rightarrow Downloads \rightarrow SPS \rightarrow FPWIN Pro \rightarrow Library

Other Panasonic products

Memo

Other Panasonic products

Panasonic Electric Works offers a wide product range from one source, from individual components to complete systems. Technology support for advice, design-in, installation and commissioning by our qualified application engineers round off the Panasonic service profile.

Human machine interfaces

Our compact size, bright and easy-to-read human machine interfaces can be used to visualize inspection results. Touch panels can even replace the standard keypad if you so desire.

UV curing systems

Aicure UJ30 is a LED curing system that quickly hardens UV-sensitive resins such as adhesives, ink and coatings. Its cutting edge LED technology is especially suited for precise, high-intensity curing.

ACD components

Components such as Eco-POWER METERS, timers/counters, temperature controllers, limit switches and fans round off our wide factory automation product range.

Sensors

As a pioneering manufacturer of sensors, Panasonic provides high performance sensors for a wide range of applications, facilitating factory automation in various types of production lines, such as those used for the manufacturing of semiconductors.

Laser Markers

Panasonic Laser Markers are ideal for non-contact, permanent labeling of most materials, e.g. metal, plastics, glass, paper, wood and leather. Several CO_{2} laser marking systems and a unique FAYb fiber laser marker can be easily integrated into existing production systems for a great variety of marking tasks.

Global Network

North America
 Europe
 Panasonic Electric Works

Asia Pacific China

Japan

Please contact our Global Sales Companies in:

Europe		
- Headquarters	Panasonic Electric Works Europe AG	Rudolf-Diesel-Ring 2, 83607 Holzkirchen, Tel. +49 (0) 8024 648-0, Fax +49 (0) 8024648 -111, www.panasonic-electric-works.com
- Austria	Panasonic Electric Works Austria GmbH	Josef Madersperger Str. 2, 2362 Biedermannsdorf, Tel. +43 (0) 2236-26846, Fax +43 (0) 2236-46133 www.panasonic-electric-works.at
	Panasonic Industrial Devices Materials Europe GmbH	Ennshafenstraße 30, 4470 Enns, Tel. +43 (0) 7223 883, Fax +43 (0) 722388333 , www.panasonic-electronic-materials.com
- Benelux	Panasonic Electric Works Sales Western Europe B.V.	De Rijn 4, (Postbus 211), 5684 PJ Best, (5680 AE Best), Netherlands, Tel. +31 (0) 499 372727, Fax +31 (0) 499372185 , www.panasonic-electric-works.nl
- Czech Republic	Panasonic Electric Works Europe AG	Administrative centre PLATINIUM, Veveři 3163/111, 61600 Brno, Tel. +420541217 001, Fax +420 541217 101, www.panasonic-electric-works.cz
- France	Panasonic Electric Works Sales Western Europe B.V.	Succursale française, 10, rue des petits ruisseaux, 91370 Verrières Le Buisson, Tél. +33 (0) 160135757 , Fax +33 (0) 160135758 , www.panasonic-electric-works.fr
- Germany	Panasonic Electric Works Europe AG	Rudolf-Diesel-Ring 2, 83607 Holzkirchen, Tel. +49 (0) 8024 648-0, Fax +49 (0) 8024 648-111, www.panasonic-electric-works.de
- Hungary	Panasonic Electric Works Europe AG	Magyarországi Közvetlen Kereskedelmi Képviselet, 1117 Budapest, Neumann János u. 1., Tel. +3619998926 www.panasonic-electric-works.hu
- Ireland	Panasonic Electric Works UK Ltd.	Irish Branch Office, Dublin, Tel. +353 (0) 14600969, Fax +353 (0) 14601131, www.panasonic-electric-works.co.uk
- Italy	Panasonic Electric Works Italia srl	Via del Commercio 3-5 (Z.I. Ferlina), 37012 Bussolengo (VR), Tel. +39 0456752711, Fax +390456700444, www.panasonic-electric-works.it
- Nordic Countries	Panasonic Electric Works Europe AG Panasonic Eco Solutions Nordic AB	Filial Nordic, Knarrarnäsgatan 15, 16440 Kista, Sweden, Tel. +46 859476680, Fax +46859476690 , www.panasonic-electric-works.se Jungmansgatan 12, 21119 Malmö, Tel. +46 40697 7000, Fax +46 40697 7099, www.panasonic-fire-security.com
- Poland	Panasonic Electric Works Polska sp. z 0.0	ul. Wołoska 9A, 02-583 Warszawa, Tel. +4822 338-11-33, Fax +48 22 338-12-00, www.panasonic-electric-works.pl
- Spain	Panasonic Electric Works España S.A.	Barajas Park, San Severo 20, 28042 Madrid, Tel. +34913293875, Fax +34913292976 , www.panasonic-electric-works.es
- Switzerland	Panasonic Electric Works Schweiz AG	Grundstrasse 8, 6343 Rotkreuz, Tel. +41 (0) 41 7997050, Fax +41 (0) 417997055 , www.panasonic-electric-works.ch
- United Kingdom	Panasonic Electric Works UK Ltd.	Sunrise Parkway, Linford Wood, Milton Keynes, MK14 6 LF, Tel. +44 (0) 1908 231555, Fax +44 (0) 1908 231599, www.panasonic-electric-works.co.uk

North \& South America

- USA Panasonic Industrial Devices Sales Company 629 Central Avenue, New Providence, N.J. 07974, Tel. 1-908-464-3550, Fax 1-908-464-8513, www.pewa.panasonic.com of America

Asia Pacific/China/Japan

- China
- Japan
- Singapore
- Hong Kong Panasonic Industrial Devices Automation Controls Sales (Hong Kong) Co., Ltd.
Panasonic Electric Works Sales (China) Co. Ltd.

Panasonic Corporation
Panasonic Industrial Devices
Automation Controls Sales Asia Pacific

Level 2, Tower W3, The Towers Oriental Plaza, No. 2, East Chang An Ave., Dong Cheng District, Beijing 100738, Tel. +86-10-5925-5988, Fax +86-10-5925-5973
RM1205-9, 12/F, Tower 2, The Gateway, 25 Canton Road, Tsimshatsui, Kowloon, Hong Kong, Tel. +852-2956-3118, Fax +852-2956-0398
1048 Kadoma, Kadoma-shi, Osaka 571-8686, Japan, Tel. +81-6-6908-1050, Fax +81-6-6908-5781, www.panasonic.net
300 Beach Road, \#16-01 The Concourse, Singapore 199555, Tel. +65-6390-3811, Fax +65-6390-3810

[^0]: * NC: Numerical control (motion controller, positioning unit)

[^1]: ＊For details，please refer to page 19

