

TA2P

Product Segments

Industrial Motion

Both the TA2 and the TA2P are compact, robust, and capable of performing well in certain outdoor environments. A more powerful motor makes the TA2P capable of handling load ratings up to 3500N (787 pounds) while retaining its compact size. In addition to the high power motor, the TA2P linear actuator is available with multiple choices for feedback sensors. Industry certifications for the TA2P linear actuator include IEC / ES 60601-1 and UL73.

General Features

Voltage of motor 12, 24, 36V DC, or 12, 24V DC (PTC)

Maximum load 3,500N in push
Maximum load 2,000N in pull
Maximum speed at full load 45mm/s

(with 250N in a push or pull condition)

Stroke 20~1000mm

 $\mbox{Minimum installation dimension} \quad \geq \mbox{Stroke} + 108\mbox{mm (with Hall sensors or} \quad$

without output signals)

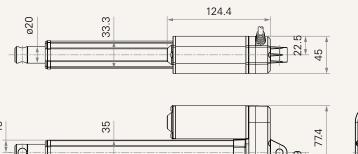
Color Silver

Certificate IEC60601-1, ES60601-1, EN 61000-6-1,

EN 61000-6-3, UL73

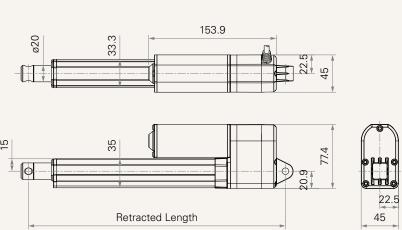
IP rating Up to IP66D Operational temperature range $-25^{\circ}\text{C} \sim +65^{\circ}\text{C}$ Operational temperature range $+5^{\circ}\text{C} \sim +45^{\circ}\text{C}$

at full performance


Options POT, Reed or Hall sensors

1

TA2P series


Drawing

Dimensions without Output Signal or with Hall Sensors (mm)

Retracted Length

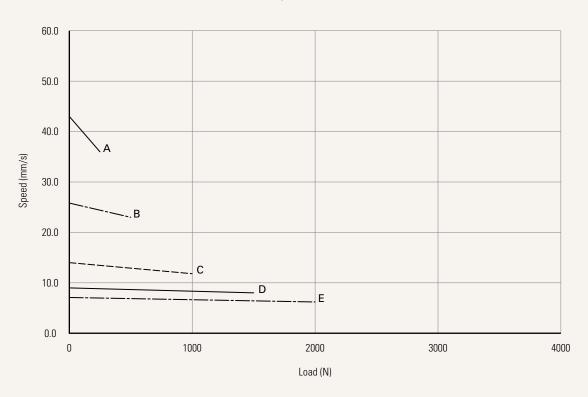
Dimensions with POT or Reed Sensor (mm)

45

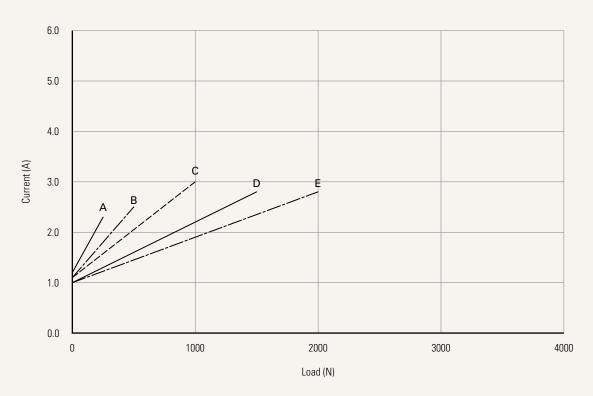
Load and Speed

CODE	Load (N)		Self	Typical Curr	Typical Current (A)		Typical Speed (mm/s)	
	Push	Pull	Locking Force (N)	No Load 24V DC	With Load 24V DC	No Load 24V DC	With Load 24V DC	
Motor Spee	d (5200RPM, du	ty cycle 25%)						
Α	250	250	250	1.2	2.3	43.0	36.0	
В	500	500	500	1.1	2.5	25.8	23.0	
C	1000	1000	1000	1.1	3.0	14.0	11.8	
D	1500	1500	1500	1.0	2.8	9.0	8.0	
E	2000	2000	2000	1.0	2.8	7.1	6.2	
Motor Spee	d (6600RPM, du	ty cycle 25%)						
F	250	250	250	1.6	3.0	56.5	45.0	
G	500	500	500	1.5	3.0	32.5	28.5	
Н	1000	1000	1000	1.5	3.0	16.5	14.3	
K	1500	1500	1500	1.3	3.0	11.1	10.0	
L	2000	2000	2000	1.3	3.0	8.8	7.7	
Motor Spee	d (3800RPM, du	ty cycle 25%)						
S	3500	2000	3500	0.8	2.8	3.2	2.4	
Motor Spee	d (2200RPM, du	ty cycle 25%)						
Т	2000	2000	2000	0.3	0.9	3.2	2.3	

Note


- 1 Please refer to the approved drawing for the final authentic value.
- 2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.
- 6 The current & speed in table are tested with 24V DC motor. With a 12V DC motor, the current is approximately twice the current measured in 24V DC. With a 36V DC motor, the current is approximately two-thirds the current measured in 24V DC. Speed will be similar for all the voltages.
- 7 The current & speed in table are tested when the actuator is extending under push load.
- 8 The current & speed in table and diagram are tested with a stable 24V DC power supply.
- 9 Standard stroke: Min. \geq 20mm, Max. please refer to below table.

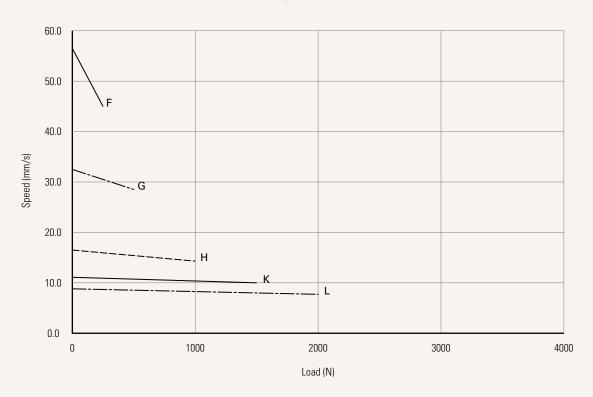
CODE	Load (N)	Max Stroke (mm)
A, F	≤ 250	1000
B, G	≤ 750	800
C, H	≤ 1000	600
D, K	≤ 1500	500
E, L, T	≤ 2000	450
s	≤ 3500	300



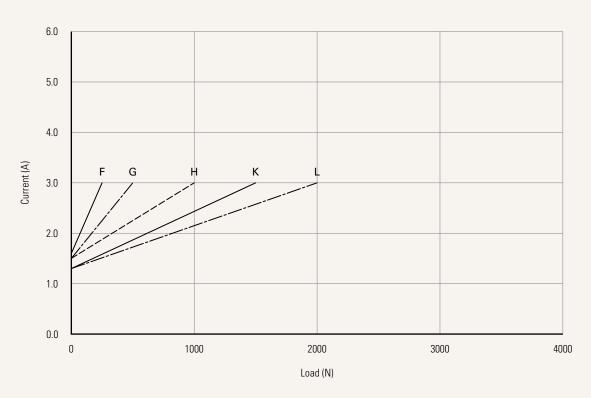
Motor Speed (5200RPM, duty cycle 25%)

Speed vs. Load

Current vs. Load


Note

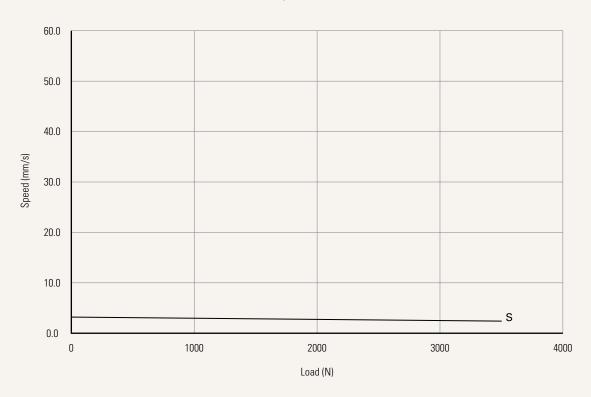
1 The performance data in the curve charts shows theoretical value.



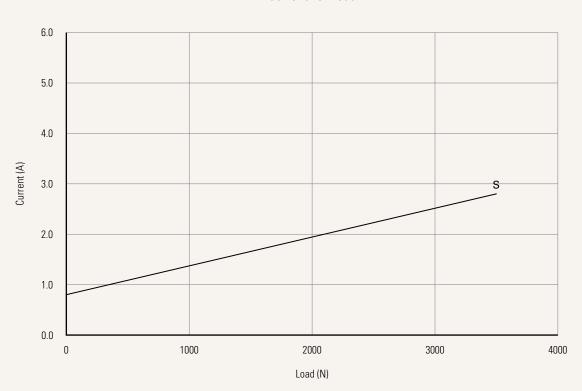
Motor Speed (6600RPM, duty cycle 25%)

Speed vs. Load

Current vs. Load


Note

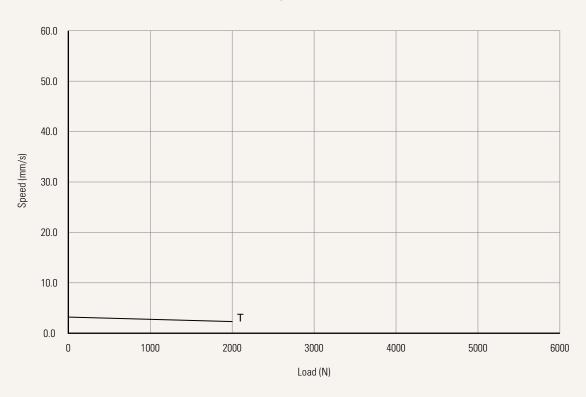
1 The performance data in the curve charts shows theoretical value.



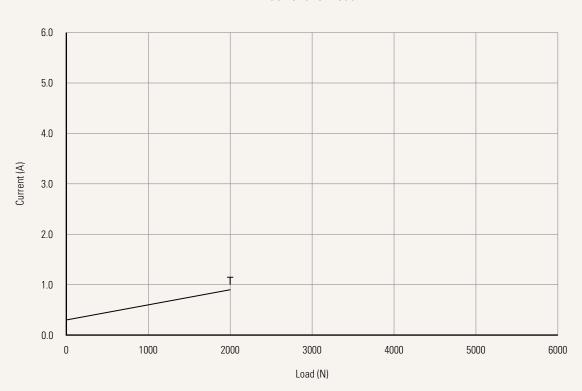
Motor Speed (3800RPM, duty cycle 25%)

Speed vs. Load

Current vs. Load


Note

1 The performance data in the curve charts shows theoretical value.



Motor Speed (2200RPM, duty cycle 25%)

Speed vs. Load

Current vs. Load

Note

 $\ensuremath{^{1}}$ The performance data in the curve charts shows theoretical value.

TA2P Ordering Key

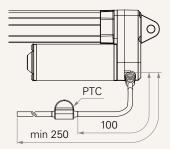
TA2P

				Version: 20191211-0
Voltage	1 = 12V DC	5 = 24V DC, PTC, See page	10	
	2 = 24V DC	6 = 12V DC, PTC, See page	<u>10</u>	
	3 = 36V DC			
Load and Speed	See page 3			
Stroke (mm)	See page 3			
Retracted Length (mm)	See page 9			
Rear Attachment (mm)	1 = Aluminum casting, h	ole 6.4, one piece casting with	4 = Aluminum casting, 6.4, one piece cast	U clevis, slot 6.0, depth 10.5, hole ing with gear box
See page 10	2 = Aluminum casting, he gear box	ole 8.0, one piece casting with	5 = Aluminum casting, 8.0, one piece cast	U clevis, slot 6.0, depth 10.5, hole ing with gear box
	3 = Aluminum casting, he gear box	ole 10.0, one piece casting with		U clevis, slot 6.0, depth 10.5, hole sting with gear box
Front Attachment (mm)	1 = Aluminum casting, h		4 = Aluminum CNC, U 6.4	clevis, slot 6.0, depth 16.0, hole
See page 11	2 = Aluminum casting, had 3 = Aluminum CNC, U cla	ole 8.0 evis, slot 6.0, depth 16.0, hole		clevis, slot 6.0, depth 16.0, hole
Direction of Rear Attachment (Counterclockwise) See page 11	1 = 90°	2 = 0°		
Functions for Limit Switches		retracted / extended positions to		
See page 11		retracted / extended positions to		n between to send signal
<u>000 pago 11</u>		retracted / extended positions to retracted / extended positions to	•	in botwoon to condicional
		· ·		
Output Signals	0 = Without	1 = POT	3 = Reed sensor	5 = Hall sensor * 2
Connector See page 12	1 = DIN 6P, 90° plug	2 = Tinned leads		
Cable Length (mm)	1 = Straight, 300	2 = Straight, 600	3 = Straight, 1000	
IP Rating	1 = Without	2 = IP54	3 = IP66	6 = IP66D

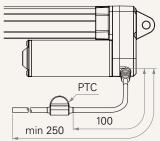
Retracted Length (mm)

- 1. Calculate A+B+C=Y
- 2. Retracted length needs to \geq Stroke + Y

A. Attachment					
Front Attachment	Rear Attachment				
	1, 2, 3	4, 5, 6			
1, 2	+108	+112			
3, 4, 5	+120	+124			

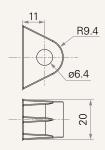

C. Output Signals					
CODE					
0, 5	-				
1, 3	+30				

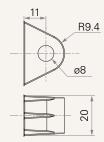
B. Load V.S. Stroke					
Stroke (mm)	Load (N)				
	< 3500	= 3500			
20~150	-	+5			
151~200	+2	+7			
201~250	+2	+7			
251~300	+2	+7			
301~350	+12	+17			
351~400	+22	+27			
401~450	+32	+37			
451~500	+42	+47			
501~550	+52	+57			
551~600	+62	+67			
601~650	+72	+77			
651~700	+82	+87			
701~750	+92	+97			
751~800	+102	+107			
801~850	+112	+117			
851~900	+122	+127			
901~950	+132	+137			
951~1000	+142	+147			



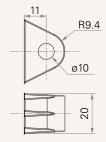
Voltage

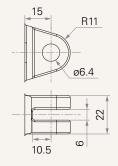
5 = 24V DC, PTC

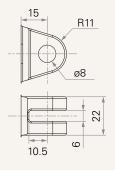


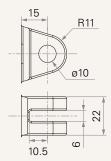


Rear Attachment (mm)

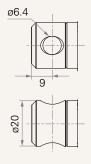

1 = Aluminum casting, hole 6.4, one piece casting with gear box

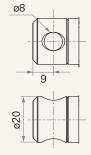

2 = Aluminum casting, hole 8.0, one piece casting with gear box


3 = Aluminum casting, hole 10.0, one piece casting with gear box


4 = Aluminum casting, U clevis, slot 6.0, depth 10.5, hole 6.4, one piece casting with gear box

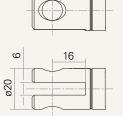
5 = Aluminum casting, U clevis, slot 6.0, depth 10.5, hole 8.0, one piece casting with gear box


6 = Aluminum casting, U clevis, slot 6.0, depth 10.5, hole 10.0, one piece casting with gear box

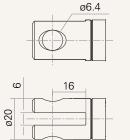


Front Attachment (mm)

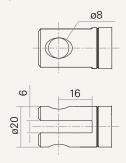
1 = Aluminum casting, hole 6.4

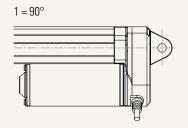


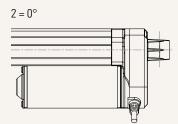
2 = Aluminum casting, hole 8.0



3 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 10.0

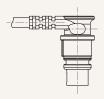

ø10


4 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 6.4

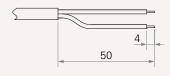


5 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 8.0

Direction of Rear Attachment (Counterclockwise)


Functions for Limit Switches

Wire Definitions							
CODE	Pin						
	1 (Green)	2 (Red)	3 (White)	4 (Black)	5 (Yellow)	6 (Blue)	
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A	
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A	
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch	
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch	



Connector

1 = DIN 6P, 90° plug

Terms of Use