TA2

series

- Industrial Motion

TiMOTION's TA2 series linear actuator is compact, robust and capable of performing well in certain outdoor environments. This linear actuator is perfect for use in small spaces where force or capability cannot be sacrificed. Options include feedback sensors, signal sending limit switches and 90 degree clevis mounting. Industry certifications for the TA2 linear actuator include IEC60601-1, ES60601-1, and EMC.

General Features

Voltage of motor

Maximum load
Maximum speed at full load

Stroke
Minimum installation dimension
Color
Certificate
Operational temperature range

Operational temperature range
at full performance
IP rating
Options
Compact size for limited space
$12,24,36,48 \mathrm{~V}$ DC, or
12, 24, 36, 48V DC (PTC)
$1,000 \mathrm{~N}$ in pull and push
$51 \mathrm{~mm} / \mathrm{s}$
(with 120 N in a push or pull condition)
20~1000mm
\geq Stroke +105 mm (without output signals)
Silver
IEC60601-1, ES60601-1, EMC
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$ (Load $\left.<500 \mathrm{~N}\right)$
$-25^{\circ} \mathrm{C} \sim+65^{\circ} \mathrm{C}($ Load $\geq 500 \mathrm{~N})$
$+5^{\circ} \mathrm{C} \sim+45^{\circ} \mathrm{C}$

Up to IP66D
POT, Reed, Hall sensors

Drawing

Dimensions without Output Signals (mm)

Dimensions with
Output Signals
(mm)

Load and Speed

CODE	Load			Typical C	(A)	Typical	mm/s)
	Push	Pull	Locking Force (N)	No Load 24V DC	With Load 24V DC	No Load 24V DC	With Load 24V DC
Motor	ORP	e 25°					
A	120	120	120	0.8	1.0	44.0	33.0
B	240	240	240	0.7	1.0	22.0	16.5
C	500	500	500	0.6	0.9	11.0	8.5
D	750	750	750	0.6	0.9	7.5	6.2
E	1000	1000	1000	0.6	0.9	5.6	4.6
Motor	ORPI	le 25					
F	120	120	120	1.0	1.8	67.5	51.0
G	240	240	240	0.9	1.7	33.5	26.5
H	500	500	500	0.8	1.5	17.0	14.0
K	750	750	750	0.8	1.5	11.0	10.0
L	1000	1000	1000	0.8	1.5	9.0	7.6

Note

1 With a 12 V motor, the current is approximately twice the current measured in 24 V . With a 36 V motor, the current is approximately two-thirds the current measured in 24 V . With a 48 V motor, the current is approximately half the current measured in 24 V . Speed wil be similar for all the voltages.

2 This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the TiMOTION control boxes have this feature built-in.

3 Current and speed: Tested average value when stretching in push direction.
4 Standard stroke: Min. $\geq 20 \mathrm{~mm}$, Max. please refer to below table.

CODE	Load (N)	Max Stroke (mm)
A, B, F, G	≤ 250	1000
C, D, H, K	≤ 750	800
E, L	≤ 1000	600

Performance Data (24V DC)

Motor Speed (4200RPM, duty cycle 25\%)

Speed vs. Load

Current vs. Load

Performance Data (24V DC)

Motor Speed ((6000RPM, duty cycle 25\%)

Speed vs. Load

Current vs. Load

TA2

Voltage	$1=12 \mathrm{~V}$ DC $\quad 3=36 \mathrm{~V}$ DC	$5=24 \mathrm{~V}$ DC, PTC $\quad 7=36 \mathrm{~V}$ DC, PTC
	$2=24 \mathrm{~V}$ DC $\quad 4=48 \mathrm{~V}$ DC	$6=12 \mathrm{~V}$ DC, PTC $\quad 8=48 \mathrm{~V}$ DC, PTC
Load and Speed	See page 3	
Stroke (mm)		
Retracted Length (mm)	See page 7	
Rear Attachment (mm)	$1=$ Aluminum casting, without slot, hole 6.4, one piece casting with gear box	4 = Aluminum casting, U clevis, slot 6.0 , depth 10.5 , hole 6.4 , one piece casting with gear box
See page 8	2 = Aluminum casting, without slot, hole 8.0, one piece casting with gear box	5 = Aluminum casting, U clevis, slot 6.0, depth 10.5, hole 8.0, one piece casting with gear box
	3 = Aluminum casting, without slot, hole 10.0, one piece casting with gear box	6 = Aluminum casting, U clevis, slot 6.0 , depth 10.5 , hole 10.0, one piece casting with gear box
Front Attachment (mm)	$1=$ Aluminum casting, without slot, hole 6.4 2 = Aluminum casting, without slot, hole 8.0	4 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 6.4
See page 8	3 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 10.0	5 = Aluminum CNC, U clevis, slot 6.0 , depth 16.0 , hole 8.0
		6 = Aluminum casting, hole 10.0
Direction of Rear Attachment (Counterclockwise)	$1=90^{\circ} \quad 2=0^{\circ}$	

See page 9

Functions for	1 = Two switches at full retracted / extended positions to cut current			
Limit Switches				
See page 9	3 = Two switches at full retracted / extended positions to send signal			
	4 = Two switches at full retracted / extended positions to send signal + third one in between to send signal			
Output Signal	$0=$ Without	$1=$ POT	3 = Reed sensor	5 = Hall sensors*2
Connector	1 = DIN 6P, 90° plug	$2=$ Tinned leads		
See page 9				
Cable Length (mm)	$1=$ Straight, 300	$2=$ Straight, 600	$3=$ Straight, 1000	

IP Rating	$1=$ Without	$2=1$ P54	$3=\mid \mathrm{P} 66$	$6=\mid \mathrm{P} 66 \mathrm{D}$

TA2 Ordering Key Appendix

Retracted Length (mm)

1. Calculate $A+B+C=Y$
2. Retracted length needs to \geq Stroke $+Y$

A. Rear/ Front Attachment		
Front Attachment	Rear Attachment	
$\mathbf{1 , 2 , 6}$	$1,2,3$	$4,5,6$
$\mathbf{3 , 4 , 5}$	+105	+109

C. Output Signals

CODE
0
$\mathbf{1 , 3 , 4 , 5}+30$
B. Stroke (mm)

$\mathbf{2 0 \sim 1 5 0}$	-
$\mathbf{1 5 1 \sim 2 0 0}$	+2
$\mathbf{2 0 1 \sim 2 5 0}$	+2
$\mathbf{2 5 1 \sim 3 0 0}$	+2
$\mathbf{3 0 1 \sim 3 5 0}$	+12
$\mathbf{3 5 1 \sim 4 0 0}$	+22
$\mathbf{4 0 1 \sim 4 5 0}$	+32
$\mathbf{4 5 1 \sim 5 0 0}$	+42
$\mathbf{5 0 1 \sim 5 5 0}$	+52
$\mathbf{5 5 1 \sim 6 0 0}$	+62
$\mathbf{6 0 1 \sim 6 5 0}$	+72
$\mathbf{6 5 1 \sim 7 0 0}$	+82
$\mathbf{7 0 1 \sim 7 5 0}$	+92
$\mathbf{7 5 1 \sim 8 0 0}$	+102
$\mathbf{8 0 1 \sim 8 5 0}$	+112
$\mathbf{8 5 1 \sim 9 0 0}$	+122
$\mathbf{9 0 1 \sim 9 5 0}$	+132
$\mathbf{9 5 1 \sim 1 0 0 0}$	+142

Voltage

Rear Attachment (mm)

1 = Aluminum casting, without slot, hole 6.4 , one piece casting with gear box

5 = Aluminum casting, U clevis, slot 6.0 , width 10.5 , hole 8.0, one piece casting with gear box

2 = Aluminum casting, without slot, hole 8.0, one piece casting with gear box

6 = Aluminum casting, U clevis, slot 6.0 , width 10.5 , hole 10.0 , one piece casting with gear box

$3=$ Aluminum casting, without slot, hole 10.0, one piece casting with gear box

4 = Aluminum casting, U clevis, slot 6.0 , width 10.5 , hole 6.4 , one piece casting with gear box

Front Attachment (mm)

$1=$ Aluminum casting, without slot, hole 6.4

4 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 6.4

2 = Aluminum casting, without slot, hole 8.0
$\varnothing 8$

5 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 8.0

$6=$ Aluminum casting, without slot, hole 10.0

3 = Aluminum CNC, U clevis, slot 6.0, depth 16.0, hole 10.0

Direction of Rear Attachment (Counterclockwise)

Functions for Limit Switches

Wire Definitions

CODE	Pin					
	1 (Green)	2 (Red)	\bigcirc (White)	- 4 (Black)	5 (Yellow)	6 (Blue)
1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A
2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A
3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch
4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch

TA2 Ordering Key Appendix

Connector

$1=$ DIN $6 P, 90^{\circ}$ plug

$2=$ Tinned leads

Terms of Use

The user is responsible for determining the suitability of TiMOTION products for a specific application. TiMOTION products are subject to change without prior notice.

